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Abstract. Portfolio performance assessment needs to be carried out before or after the 

investment decision is taken, in order to minimize the possibility of risk loss. This 

paper discusses the expansion of the investment portfolio performance appraisal 

model based on Value-at-Risk, where the analyzed stock returns on mean and 
volatility is non-constant.The aim is to increase the likelihood of achieving investment 

objectives by investors. In this paper the mean is estimated using autoregressive 

moving average models, while the non-constant volatility is estimated using generally 
autoregressive conditional heteroscedastic models. The estimator’s ofmean and non-

constant volatility are then used for the analysis of investment portfolio optimization. 

Portfolio optimization issues are followed based on the basic framework of the Mean-
Value-at-Risk model. The solution to the investment portfolio optimization problem is 

done by using the Lagrange multiplier technique and the Kuhn-Tucker 

method.Assessment of investment portfolio performance is based on Reward to 
Value-at-Risk, which is then used to compare the two investment portfolios A and B 

are analyzed. The results of the analysis show that portfolio A has better performance  

than portfolio B. So it is recommended to investors to choose an investment portfolio 
A, to achieve a better level of success. 

1. Introduction 
In dealing with risky investments, investors must make a decision to choose an efficient portfolio that 
has better performance. To make a decision, an assessment of an efficient portfolio needs to be done. 

The performance assessment of an efficient portfolio can be carried out before or after the investment 

decision is taken [1][2][3]. Efficient portfolio performance evaluation is to increase the likelihood of 
achieving investor goals. In conditions of uncertainty, investors cannot choose investment 

opportunities only by considering the level of profit offered. Investors need to consider the element of 

risk [4][5]. Therefore, the assessment of investment performance will be based on the level of profit 
and risk [6][7]. 
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Portfolio risk is the possibility of a level of profit deviating from what is expected. Therefore, 

certain dispersal measures are often used as a measure of risk [8][9]. Standard deviation or variance is 

often used as a measure of investment portfolio risk [10]. However, many loss risk events exceed the 
standard deviation or variance.Therefore, the idea arises to measure risk using a quantile, or more 

popularly called Value-at-Risk (VaR) [10][11]. The amount of VaR depends on the average parameter 

value and volatility of a stock return, as well as the probability of possible risk of loss. Stock returns 
often have a non-constant mean and volatility, and even have long memory effects [12][13]. 

This paper aims to analyze portfolio performance measurement based on VaR risk measure. 

Average and volatility as constituents in VaR will be analyzed using a time series approach. The 
average is estimated using autoregressive fractionally integrated moving average (ARFIMA) models. 

Non-constant volatility is estimated using the generally autoregressive conditional heteroscedastic 

(GARCH) models.For efficient portfolio selection is based on the Mean-VaR portfolio optimization 

model. While to measure portfolio performance is done using the Reward to Value-at-Risk (RVaR) 

approach. The application of this method is used to analyze ten stocks traded in the capital market in 

Indonesia. The aim is to compare and choose a portfolio that has better performance than other 

portfolios. This study is useful for investors to find out the performance of two investment 

portfolios, where risk is measured by Value-at-Risk, where data follows a time series pattern. 
 

2. Methodology 
Suppose itP and itr successively stated prices and stock returns i  ( 1,...,i N� and N the number of stocks 

analyzed), at the time t  ( 1,...,t T� , T data observation period). Stock returns itr calculated using 

formula 1ln( / )it it itr P P �� [5; 14]. The return data model estimation is then performed on mean and 

volatility as follows. 

2.1 Modeling of mean and volatility 
Modeling of mean. Identification of long memory effects on stock returns data itr . Identification is 

done using the rescale (R / S) method or the Geweke and Porter-Hudak (GPH) methods. Estimation of 

fractional differentiation parameters id  ( 1,...,i N�  and N the number of stocks analyzed), carried out 

using the maximum likelihood method [11; 13]. Confidence interval (1 )100%�� for id is

/2 1 /2
ˆ ˆ. .

i ii d i i dd z d d z� �� ��� � � � with ˆid is estimator of id , and /2z� standard normal distribution 

percentile if given a level of significance� . Suppose id fractional differentiation to be tested by the 

hypothesis. Suppose also
id� standard deviation of id . Hypothesis testing is carried out against

0
ˆ: 0iH d � and 1

ˆ: 0iH d � use /
i id i dz d �� . Test criteria are reject 0H if value /2idz z��  atau 

1 /2idz z ��	 [12; 14]. 

Fractional differentiation processes are defined as: 

(1 ) id
it itB r a� � , 5.05.0 ��� id ;                                                                                               (1) 

with{ }ita is residual white noise series, and B stated the backshift operator. If fractional differentiation 

series (1 ) id
itB r� follow the model of ARMA ( ,p q ), then itr called the autoregressive fractionally 

integrated moving average degree process p , d and q , or ARFIMA( , ,p d q ) [14].  Model equation of 

ARMA( ,p q ) is: 

0 1 1
p q

it i ig it g it ih it hg hr r a a
 
 �� �� �� � � �� � ,                                                                       (2) 
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with 0i
 constants, and ig
 ( 1,..., )g p� ,and ih� ( 1,..., )h q� parameter coefficient of the mean stock 

return model i  ( 1,...,i N� and N the number of stocks analyzed). Assumed{ }jta residual white noise 

sequence with zero mean and variance 2

ja� [14][15]. 

The stages of the average modeling process include: (i) Model identification, (ii) Estimation of 
parameters, (iii) Test diagnosis, and (iv) Prediction [14]. 

Modeling of volatility. Stock return volatility modeling is performed using generalized 

autoregressive conditional heteroscedastic (GARCH) models. Suppose it
 and 2
it� successive mean 

and volatility of stock returns i  ( 1,...,i N�  and N the number of stocks analysed), at the time t  (

1,...,t T� andT data observation period). Residual ita the above has an equation it it ita r 
� � [11; 14]. 

Volatility 2
it� will follow the GARCH model with degrees m and n or written as GARCH( ,m n ), when: 

it it ita � �� ,  2 2 2
0 1 1

m n
it i ik il itit k it lk la� � � � � �� �� �� � � �� � ,                                                (3) 

with 0i� constants, and ik� ( 1,..., )k m� ,and il� ( 1,..., )l n� parameter coefficient of stock return 

volatility model i  ( 1,...,i N� and N the number of stocks analyzed). Assumed{ }it� squence of random 

variables are mutually independent and have identical distributions (iid) with an average of 0 and 

variance 1 0 0i� 	 , 0ik� � , 0il� � , and
max( , )

1
( ) 1

m n
ik ikk � �� � �� [14][16]. 

Stages of the volatility modeling process include: (i) Estimation of the average model, (ii) ARCH 

effect test, (iii) Model identification, (iv) Estimation of the volatility model, (v) Test diagnosis, and 
(vi) Prediction [14]. 

Using the mean model (2) and volatility (3), the prediction is carried out aimed at calculating the 

mean ˆ ˆ (1)it iTr
 �  and variance 2 2ˆ ˆ (1)it iT� �� , namely the prediction of the l-step forward after the time 

period toT [14]. 

2.2  Portfolio modal and Value-at-Risk 
In the formation of an investment portfolio w , will relate to the proportion of funds allocated to each 

of the shares analyzed. Suppose wi is the proportion of funds allocated to stocks i , where
1

1
N

ii w� �� , 

then portfolio return can be expressed as: 

1

N
wt i it

i
R w R

�
� � ,                                                                                                                              (4) 

where wtR portfolio return w at time t , and N the number of stocks in the formation of a portfolio[10; 

14]. 

Based on (5), the mean (expectation) portfolio is obtained with weights iw can be stated as: 

1

ˆ ˆ
N

wt i it
i

w
 

�

� �                                                                                                                               (5) 

While portfolio variance can be expressed as: 

2 2 2

1 1 1

2
N N N

wt i it i j ij
i i j

w w w� � �
� � �

� �� �� ; i j�                                                                                  (6) 

where ( , )ij it jtCov r r� � . 

Suppose the amount of the initial investment is one unit, and the level of significance of the risk 

of loss is� , thenVaRfor portfolios with weights iw is: 
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ˆ ˆwt wt wtVaR z�� 
� �                                                                                                                      (7) 

where z� is the percentile value of a standard normal distribution with a level of significance� [10; 11; 

14]. 

2.3  Mean-Vary Portfolio Optimization 
Suppose that the vector values of expectations and covariance matrices are given successively by:

1ˆ ˆ( ,..., )T
t it
 
�μ , with ˆ [ ]it itE R
 � , 1,...,i N� , and , 1,...,ˆ( )ij i j N� ��Σ , with ˆ ( , )ij it jtCov r r� � , 

, 1,...,i j N� . Refer to the previous discussion, the weight of stock returns in a portfolio

1( ,..., )T
Nw w�w , where

1
1

N
ii w� �� or 1

T �e w with (1,...,1)T�e vector with one-on-one element. 

Referring to equation (5) can be rewritten as 

[ ] T
wt wtE R
 � � μ w ,                                                                                                                    (8)  

and equation (6) is rewritten as: 

2 ( ) T
wt wtVar R� � �w Σw .                                                                                                            (9) 

Use the level of significance� , the percentile z� obtained from the standard normal distribution table. 

So the Value-at-Risk investment portfolio equation (13) can be rewritten as: 

1/2( )T T
wt wt wtVaR z z� �� 
� � � �w Σw μ w .                                                                         (10) 

A portfolio *w called (Mean-VaR) efficiently if there is no portfolio w with *wt wt
 
� and

*wt wtVaR VaR� [3; 7; 9]. To get an efficient portfolio, the objective function is determined maximally

{2 }wt wtVaR�
 � , 0� � where� is investor risk tolerance. So, for investors with risk tolerance 0� �
must solve optimization problems [13; 5]: 

1/2maks{2 ( ) }

          kendala 1

T T T

T
z�� � �

�

μ w w Σw μ w

e w
                                                                                        (11) 

Because of the covariance matrix Σ semidefinite positive, the objective function is quadratic 
concave. Therefore, (12) is a concave quadratic optimization problem. The Lagrange function is given 

by: 

1/2( , ) (2 1) ( ) ( 1)T T TL z�� � �� � � � �w μ w w Σw e w . 

Using the Kuhn-Tucker theorem, the optimality requirement is: 

1/2/ (2 1) / ( ) 0TL z�� �� � � � � � �w μ Σw w Σw e  dan / 1 0
TL �� � � � �e w .                          (12) 

Based on algebraic calculations, if for example 1TA �� e Σ e , (2 1)B �� � 1 1( )T T� ��μ Σ e e Σ μ and

2 1 2(2 1) ( )TC z�� �� � �μ Σ μ , then the ABC formula is obtained: 

2 1/2{ ( 4 ) } / 2B B AC A� � � � �                                                                                                    (13) 

For 0� � , solving equation (12) obtained a portfolio with weight vector *w  

1 1(2 1)
*

1 1(2 1) T T
� �

� �

� �� �
�

� �� �

Σ μ Σ ew
e Σ μ e Σ e

                                                                                                    (14) 

If vector *w substituted into equations (8) and (10), then the average portfolio return and optimum 

Value-at-Risk will be obtained [2; 9]. 
 

2.4  Reward-to Value-at-Risk (RVaR) 
Because in this case portfolio risk is measured based on Value-at-Risk (VaR), the size of the Reward 

to Volatility (RVAR) portfolio performance is expanded to RVaR. Meaning RVaR measures the 
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comparison between portfolio risk premiums and Value-at-Risk (VaR). The mathematical equation of 

RVaR is: 

wt f

wt
RVaR

VaR

 
�

� .                                                                                                                     (15) 

Where wt
 mean portfolio return w at time t , f
 mean of risk-free asset return, and wtVaR Value-at-

Risk portfolio w at time t . Measures of good portfolio performance are determined based on the 

greatest value of RVaR [11]. 

3. Result and Analysis 

The analyzed stock data is accessed through the website http://www.finance.go.id//. The data consists 
of 10 (ten) selected shares, for the period January 2, 2015 up to June 4, 2018, which includes shares: 

INDF, DEWA, AALI, LSIP, ASII, TURB, HDMT, BMRI, UNTR, BBRI . Next, it is called 

sequentially 1S up to 10S . Share prices include the opening price, the highest price, the lowest price, 

and the closing price, but only the closing price is closed. 

3.1  The results of mean and volatility modeling 
In this section ten shares are analyzed 1S up to 10S . The analysis starts with calculating the return of 

each stock, then identifying the long memory effect, estimating the average model and the volatility 

model. 
 Identification of long memory effects.To identify long memory effects, it is done by estimating 

fractional differentiation parameters id  ( 1,...,10i � ) in equation (1). Estimates were made using the 

Gewek and Porter-Hudak methods, with the help of software R. The estimation results obtained 

fractional differentiation values 1d̂ =0.333742; 7d̂ = 0.016421 and 10d̂ = -0.062398. Based on the 

results of the hypothesis test shows that stocks 1S , 7S and 10S there is a significant long memory effect, 

with fractional differentiation 1d̂ , 7d̂ and 10d̂ . Whereas other stocks do not have long memory effects. 

Results of fractional differentiation estimates for stocks 1S up to 10S given in Table-1 column ˆid . 

Mean model estimates. In this section Eviews 9 software is used for estimating the mean model. 

The fractional stock return data will be estimated for the mean model. The first stage is the 

identification and estimation of the mean model. Identification was carried out through the fractional 

function (ACF) and partial autocorrelation function (PACF) samples. Based on the ACF and PACF 

patterns, tentative models are possible for the return data of each stock 1S up to 10S determined. Then 

the model estimation is done by referring to equation (2). From the model estimation and diagnostic 

test can be obtained a significant mean model of stocks 1S up to 10S , the results are given in Table-1 

below. 

 Estimation of volatility models. In this section Eviews 9 software is also used to estimate the 
volatility model. First, the detection of the existence of an element of autoregressive conditional 

heteroscedasticity (ARCH) against residuals ita  ( 1,...,10i � ) from the mean model. Detection is done 

using the ARCH-LM test method. Detection results indicate that the calculation value of 2�  (obs * R-
Square) on each stock 1S up to 10S generate a probability of 0.0000 or 5% smaller, which means there 

are elements of ARCH. 
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Table 1. The results of estimation of mean and volatility models of stocks 1S up to 10S  

Stocks 
( iS ) Time Series Model 

Frac.Dif. 
( ˆid ) 

Mean 
( ˆit
 ) 

Variance 

( 2ˆit� ) 

1S  ARFIMA(1, d̂ ,0)-GARCH(1,1) 0.333742 0.015399 0.002643 

2S  ARFIMA(2, d̂ ,2)-ARCH(1)-M 0 0.039007 0002797 

3S  ARFIMA(0, d̂ ,1)-GARCH(3,3) 0 0.003315 0.001331 

4S  ARFIMA(1, d̂ ,1)-GARCH(1,1) 0 0.008672 0.001921 

5S  ARFIMA(0, d̂ ,1)-GARCH(1,1) 0 -0.000262 0.001873 

6S  ARFIMA(1, d̂ ,1)-FIGARCH(1,1) 0 0.022085 0.001181 

7S  ARFIMA(1, d̂ ,1)-GARCH(1,1) 0.016421 0.003564 0.001073 

8S  ARFIMA(0, d̂ ,1)-EGARCH(1,1) 0 0.001594 0.001411 

9S  ARFIMA(2, d̂ ,2)-TGARCH(1,1) 0 0.020709 0.013362 

10S  ARFIMA(0, d̂ ,1)-GARCH(1,1) -0.062398 -0.000865 0.001237 

 

Second, identification and estimation of volatility models are carried out. The volatility model 

used is the generalized autoregressive conditional heteroscedasticity (GARCH) model referring to 

equation (3). Based on correlogram residual squares 2
ita  ( 1,...,10i � ), set a tentative volatility model 

for each stock 1S up to 10S . Estimation of the volatility model is carried out simultaneously with the 

average model. 

 In the volatility modeling process it is also shown that based on the ARCH-LM test, residuals it�  

( 1,...,10i � ) from the volatility model of each stock 1S up to 10S is white noise. The estimation results 

of the average model and volatility for stocks 1S up to 10S given in Table-1 column of "Time Series 

Model". Furthermore, the mean and volatility equations are used to estimate values ˆ ˆ (1)it itr
 � and

2 2ˆ ˆ (1)it it� ��  ( 1,...,10i � ); is a recursive 1-step forward prediction. The results for each stock 1S up to

10S given in Table-1 column of ˆit
 and 2ˆit� . 

3.2  The results of portfolio optimization A and B 
In this section analyzes two portfolios, namely portfolios A and B. portfolio of stocks that were 

analyzed include stocks 1S up to 10S , which is divided into two portfolios. Portfolio A consists of 

stocks 1S up to 5S , while portfolio B consists of stocks 6S up to 10S . 
 

Portfolio Optimization A 
A portfolio of five stocks, namely stock 1S up to 5S . Estimator based on the mean stock return 1S up to

5S , in Table-1 the average vector is arranged as follows: 

T
Aμ = (0.015399  0.039007  0.003315  0.008672  -0.000262) 

Portfolio A consists of five stocks, so the unit vector Te = (1  1  1  1  1). Next, use a volatility estimator 

in Table-1 and a return covariance estimator between stocks 1S up to 5S covariance matrix is formed as: 
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�

�

������
������
�����
�������
��������

�

����

����

����

����

����

0001873.01096921.71030434.61023112.21092689.3

1096921.7001921.01074434.91027711.11079169.3

1030434.61074434.9001331.01090245.81011399.9

1023112.21027711.11090245.8002797.01049868.2

1092689.31079169.31011399.91049868.2002643.0

8788

8878

7889

8787

8897

AΣ  

Based on the matrix AΣ , then the inverse matrix can be calculated 1
A
�Σ .  

Optimization is carried out based on portfolio problems in equation (11). Next, vector Tμ and Te

and matrix 1
A
�Σ , used to calculate the optimum weight vector using equation (14). Where risk 

tolerance� on condition 0� � in portfolio optimization here is simulated by taking several values that 

meet the requirements 1
T �e w . Assuming short sale is not permitted, taking the risk tolerance value is 

only for value 486.00 ��� . This is due to the risk tolerance value 486.0	� produce a negative 

weight. 

 For each risk tolerance value 486.00 ��� generate portfolio mean return ˆ A
 and the level of risk

AVaR different. Curved lines between pairs ˆ A
 and AVaR it forms an efficient surface. Where the mean 

minimum portfolio return is 0.015736 with a minimum VaR of 0.019629, and the mean highest 
portfolio return is 0.025191 with a maximum VaR of 0.025022. 

 Ratio between ˆ A
 and AVaR the biggest is 0.90099912 or obtained when risk tolerance� =0.486. 

Ratio between ˆ A
 and AVaR continue to experience an increase in risk tolerance intervals 0 0,486�� �
. Based on Mean-VaR portfolio optimization analysis, the optimal portfolio composition of stocks 1S
up to 5S produce a weight vector Tw = (0.21701  0.51389  0.09856  0.17038  0.00016). Where the 

composition of the optimal portfolio produces ˆ A
 = 0.025191 with AVaR = 0.025022 which is also a 

maximum portfolio. 

 

Portfolio Optimization B 
Portfolio B consists of five stocks, namely stocks 6S up to 10S . From the average estimator of stock 

returns 6S up to 10S , in Table-1 the average vector is arranged as follows: 

T
Bμ = (0.022085  0.003564  0.001594  0.020709  -0.000865) 

Portfolio B consists of five stocks, so the unit vector Te = (1  1  1  1  1). Next, from the volatility 

estimator in Table-1 and the return covariance estimator between stocks 6S up to 10S covariance matrix 

are formed as follows: 

��
�
�
�
�
�

�

�

��
�
�
�
�
�

�

�

�����
�����
�����
�������
����

�

����

����

����

����

����

001233.01047969.61062223.71038116.21060497.1

1047969.60013362.01018467.71058792.41060945.1

1062223.71018467.7001411.01065181.21063104.2

1038116.21058792.41065181.2001073.01005888.2

1060497.11060945.11063104.21005888.2001181.0

7787

7787

7787

8887

7777

BΣ  

Based on the matrix BΣ , then the inverse matrix can be calculated 1
B
�Σ .  
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 The portfolio optimization problem is based on equation (11). Using vectors Tμ and Te and matrix

1
B
�Σ , Optimal weight vector is calculated using equation (14). Risk tolerance� on condition 0� � in 

portfolio optimization here is simulated by taking several values that meet the requirements 1
T �e w . 

Assuming short sale is not permitted, taking the risk tolerance value is only for value 409.00 ��� . 

Because for the risk tolerance value 409.0	� produce a negative weight. 

 Each risk tolerance value 409.00 ��� produce ˆB
 and BVaR different. Curved lines between pairs

ˆB
 and BVaR it forms an efficient surface. Where the mean minimum portfolio return is generated ˆB

= 0.013436 with a minimum risk level BVaR = 0.014542. The highest mean return portfolio is 

0.018832 with a maximum VaR of 0.017021. 

 Ratio between ˆB
 and BVaR the biggest is 0.9509312 or obtained when risk tolerance� =0.409. 

Ratio between ˆB
 and BVaR continue to experience an increase in risk tolerance intervals 0 0,409�� �
. Based on Mean-VaR portfolio optimization analysis, the optimal portfolio composition of stocks 6S
up to 10S is a stock weight vector Tw = (0.46850  0.09989  0.04210  0.38933  0.00018). Where the 

composition of this optimal portfolio produces ˆB
 = 0.018832 dan BVaR = 0.017021 which is also ˆB

and BVaR maximum. 

3.3  Performance of portfolio A and B 
In this section an assessment of the performance of portfolios A and B is carried out, the aim is to 

determine the performance of each portfolio at various risk tolerances that meet both portfolios. 

Performance appraisal is carried out referring to equation (15). Calculation ARVaR for portfolio A and

BRVaR for portfolio B, the results is summarized in the following Table-2. Based on the RVaR values 

presented in Table 2, it appears that for the risk tolerance value 50.00 ��� the values ARVaR greater 

than values BRVaR . 

 

Table 2. The values of ARVaR and BRVaR  

No �  ARVaR  BRVaR  

1 0.00 0.666721 0.387433 

2 0.05 0.697884 0.405700 

3 0.10 0.728374 0.423855 

4 0.15 0.757918 0.441876 

5 0.20 0.786218 0.459663 

6 0.25 0.812914 0.477149 

7 0.30 0.835589 0.494258 

8 0.35 0.859494 0.510899 

9 0.40 0.878353 0.526912 

10 0.45 0.893241 0.542234 

11 0.50 0.900935 0.556655 

12 0.55 - 0.570065 

13 0.60 - 0.582166 

14 0.658 - 0.594192 
 

 For more details, RVaR values in Table-2 can be presented in graphical form as given by 

Figure 1. 
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Figure 1. Graph of ARVaR and BRVaR  
 

 

In Figure-1 it is also seen that for the risk tolerance value 50.00 ��� graph of ARVaR always above 

than the graphof BRVaR . This situation shows that portfolio A performs better than portfolio B. 

Therefore, it is advisable for investors to choose portfolio A which consists of stocks 1S , 2S , 3S , 4S
and 5S . 

4. Conclusion 
In this paper a discussion has been carried out on the expansion of the investment portfolio 

performance assessment model based on Value-at-Risk using a time series approach. Based on the 

identification of the long memory effect shows that stock returns 1S , 7S and 10S there is an element of 

long memory. Average modeling and non-constant volatility indicate that stocks return 1S , 7S and 10S
following the ARFIMA-GARCH model; 2S  ARMA-ARCH-M model; 4S , 4S and 5S  ARMA-

GARCH model; 6S  ARMA-FIGARC model; 8S  ARMA-EGARCH model; and 9S  ARMA-

TGARCH model. The average model and volatility are used to estimate the average values and 

variances of each stock. The portfolio A is composed of 1S up to 5S , whereas portfolio B consists of 6S
up to 10S . Portfolio optimization is formed based on the Mean - Value-at-Risk model. Portfolio 

performance appraisal has been carried out based on the Reward to Value-at-Risk approach, and the 
results show that portfolio A has better performance than portfolio B. Based on the analysis of 

investment portfolios which include stocks 1S up to 10S , investors are recommended to choose 

portfolio A. The limitation of this study is that the comparison of the performance of the investment 

portfolio is only valid if the risk is measured by Value-at-Risk, and the data follows a time series 

pattern. 
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