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Abstract. In machine learning problems, there are two main algorithms: supervised learning 
and unsupervised learning. Supervised learning algorithms can be used to classify data for 
tagged data; non-supervised learning algorithms can be used to cluster data for unlabeled data. 
This paper discusses the basic principles of clustering algorithm and selection of key 
parameters of clustering algorithm. The application of clustering algorithm in image 
compression is also analyzed. This paper also emphasizes the problems that should be paid 
attention to when using clustering. Finally, a practical case of image compression with K-
means is given. 

1. Introduction 
Clustering is a type of unsupervised learning that can be used to probe data structures. Clustering is the 
process of dividing data into multiple clusters, each of which consists of one or more similar data. The 
clustering algorithm requires the greatest similarity between the data of the same cluster, while the 
data of different clusters has the smallest similarity between the clusters. Unlike the classification 
learning, the clustering algorithm is an unsupervised learning method. The clustering algorithm does 
not need to label the categories of the samples, but divides the data set into several clusters according 
to the similarity of the samples. Therefore, the clusters of data are not predefined, but are defined 
according to the similarity of the characteristics of the samples. Therefore, the input cluster data does 
not need to be pre-marked. 

2. K-means algorithm 
The K-means[2][3] algorithm solves the clustering problem of data in multidimensional space. 
Supposing there is a data set ൛𝒙(ଵ), 𝒙(ଶ), … , 𝒙(ே)ൟ, it is an n-dimensional data random variable 𝒙 with 𝑁 
samples. Since the clustering algorithm is unsupervised learning, there is no target attribute y. 
Assuming that the K value is given, the goal of the K-means clustering algorithm is to divide the data 
into K clusters. Since the distance between data in the same cluster should be smaller than the distance 
with the data outside the cluster, μ୩, 𝑘 = 1,2, … , 𝐾 is introduced as a vector, which can be considered 
the center of the Kth cluster, also known as the centroid.  

The goal of the K-means algorithm is to find such a group ሼ𝝁௞ሽ, assign each data to the cluster with 
the centroid closest to itself, and find minimum accumulation distances of each data point with the 
cluster center μ୩ . For each data 𝒙(௜) , introducing a set of corresponding binary variables r୧୩ ∈ሼ0, 1ሽ, i = 1,2, … , N; , k = 1,2, … , K. if 𝒙(௜) belonging to cluster k, r୧୩=1, and for any other cluster j ≠ k, r୧୨=0. Cost function can be defined as following: 

                                                  𝐽 =  ∑ ∑ 𝑟௜௞௄௞ୀଵ  || ே௜ୀଵ 𝒙(௜) − 𝝁௞||ଶ                                                      (1) 
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The 𝐽 of the above formula represents sum of the distances between each data 𝒙(௜) and cluster center 𝝁௞. The goal of optimization is to find the best ሼr୧୩ሽ with ሼ𝝁௞ሽ, so that 𝐽 reaches a minimum. First step 
to do should be randomly selected the initial value of 𝝁௞. In the first phase, keeping 𝝁௞Fixed,  r୧୩ is 
adjusted to optimize 𝐽. In the second phase, keeping r୧୩ fixed,  𝝁௞is adjusted to optimize 𝐽. Repeating 
these two phases to optimize until convergence. Due to adjustment r୧୩ with 𝝁௞ , these two stages 
correspond to the E-step and the M-step are called EM algorithm, so the E-step and the M-step can 
also be used.  

First considering M-step, the function 𝐽  is a quadratic function of  𝝁௞ when fixing r୧୩ , let the 
derivative of  𝐽 about 𝝁௞is equal to 0, and the minimum value can be obtained: 

                                                        ப௃డ𝝁ೖ = ∑ r୧୩(𝒙(௜) − 𝝁௞)ே௜ୀଵ = 0                                                       (2) 

solving out 𝝁௞： 

                                                                 𝝁௞ = ∑ ௥೔ೖ𝒙(೔)೔ಿసభ∑ ௥೔ೖ೔ಿసభ                                                                       (3) 

The denominator of the above formula is the number of sample belonging to cluster 𝐾, and the 
numerator is the sum of the data, so 𝝁௞ is the average of all data points belonging to cluster 𝐾. 

Considering M-step, r୧୩ is independent of each other when 𝑖 is different and 𝝁௞ is fixed, so each 
data 𝒙(௜) can be optimized separately. As long as the norm is the smallest, and r୧୩ can be set to 1, such 
as follow: 

                                                  r୧୩ = ൜1, 𝑘 = 𝑎𝑟𝑔𝑚𝑖𝑛௝||𝒙(௜) − 𝝁௝|| 0,                                    𝑜𝑡ℎ𝑒𝑟                                                  (4) 

The above E-step and M-step are iteratively performed until the centroid is no longer changed or 
the number of iterations exceeds the predetermined maximum number of iterations. Since the value of 
the cost function 𝐽 is reduced at each stage, the convergence of the algorithm is guaranteed. However, 
the algorithm may converge to some local optimal value of  𝐽. Changing the initial value of 𝝁௞ and 
running program multiple times is commonly used method to solve this problem.  K-means algorithm 
is as follows: 

• Get the initial data set. 
• Determine the number 𝐾 of clusters and randomly generate the centroid of the cluster. 
• Loop execution of iterative algorithms (E-step and M-step). 
• E-step: get the index of the cluster for each data. 
• M-step: calculate the centroid of 𝐾 clusters. 
The K-means algorithm is used to classify the two types of randomly generated data, 2 centroids 

were randomly selected, 200 Gauss distribution data is generated randomly. The simulation results are 
as follows: 

 

 
Figure 1.  Binary classification with K-means algorithm 
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The K-means algorithm must randomly initialize all centroid positions before running, with the 
following considerations: 

• The number 𝑁 of data must be less than the number 𝐾 of cluster centroids. 
• Choose centroids randomly. 
• It is possible to get a local optimal solution, depending on value the centroid is initialized 
• It is usually necessary to run the K-means algorithm by multiple times while re-initializing the 

centroid position each time, and finally selecting the centroid with the lowest cost function according 
to the result. 

Another difficulty in using the K-means algorithm is the choice of K. In theory, there is no standard 
selection formula. The 𝐾  value is manually selected by according to different problems. Taking 
different 𝐾 values, the value of the cost function 𝐽 is different. As the value of  𝐾 increases, the 𝐽 value 
decreases accordingly. When the number 𝐾  of clusters is equal to the number of data points, 𝐽 is 
reduced to zero. In practice, the 𝐾 value can be selected according to the curves of  𝐾 and 𝐽. The KJ 
curve is similar to the elbow of a person. When the 𝐾 is equal to 1, the value of  𝐽 is large. When  𝐾 
drops to the inflection point, the 𝐽 rapidly drops and reaches the elbow position. Thereafter, as the 𝐾 
value increases, the 𝐽 value decreases very slowly. This inflection point is the optimal choice of the 
number of clusters 𝐾. The figure below is a two-class classification KJ trace: 
 

 
Figure 2.  Track diagram of 𝐾 and 𝐽 

3. Image Compression 
The K-means algorithm can be used to compress the image. Unlike lossless compression, K-means 
uses lossy compression, so it is not possible to recover the original image from the compressed image. 
The larger the compression ratio, the larger the difference between the compressed image and the 
original image. The principle of K-means clustering algorithm for compressing images is as follow: 

• Preferred number of selected clusters 𝐾 is very import, 𝐾 must be less than the number of 
image pixels 𝑁. 

• Using each pixel of the image as a data point, clustering it with the K-means algorithm to 
obtain the centroid 𝝁௞. 

• Storing the centroid and the index of the centroid of each pixel, so it not need to keep all the 
original data. 

It is assumed that the original image has 𝑁 pixels, each pixel adopts the RGB three-color mode. 
each value of the RGB mode needs 8 bits, and 24𝑁 bits are required to directly store the original 
image. If K-means cluster compression is performed and the number of elements is 𝐾 with cluster 
center vector 𝝁௞, then the index of each pixel needs logଶ𝐾 bits to store. The K-means totally needs Nlogଶ𝐾 bits. In addition, you need to store k centroids, which need 24k bits, so you need a total 
of 24K + Nlogଶ𝐾 bits. The following example uses the K-means algorithm to compress the image. 
The size of the original image is 1536*2048, the number of selected clusters is K=6, and the number 
of iterations is 12.  
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Figure 3.  Compressed image with K-means algorithm 

4. Conclusion 
Based on the results and discussions presented above, the conclusions are obtained as below: 

(1) K-means algorithm can be used to compress images. 
(2) Compressing an image using the K-means algorithm is a loss compression 
(3)When K is larger , the compression ratio  become larger ; when K is lower, compression ratio 

become lower. 
(4) When the image pixels are large, you should set a larger number of iterations for better 

compression. 
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