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Abstract. Visual Odometry (VO) is one of the important components of Visual SLAM system. 

Some impressive work on the end-to-end deep neural networks for 6-DoF VO has appeared. 

We propose two-part cascade network structure to learn depth from binocular image and to 

infer ego-motion from consecutive frames. We propose depth warp constraints to make the 

Network learning more geometrically information. A lot of experiments on KITTI data set 

show that our model is superior to previous unsupervised methods and has comparable results 

with the supervised method, verifying that such a depth warp constraints perform successfully 

in the unsupervised deep method which is an important complement to the geometric method. 

1.  Introduction 

With the rise of mobile robot technology, people have begun extensive research on this. Research on 

mobile robot technology involves the field of environment-aware technology, navigation and decision-

making control science. Among them, environment-aware technology is the core of the whole mobile 

robot technology. Therefore, visual simultaneous localization and mapping (V-SLAM) technology has 

received extensive attention from researchers at home and abroad. The entire V-SLAM system can be 

divided into front-end and back-end. The front-end is equivalent to visual odometry, which study the 

relationship between frame and frame. The back-end is mainly to optimize the results of the front-end, 

and use the filtering theory (EKF, UKF, PF), or the optimization theory TORO, G2O to optimize the 

tree or graph. Finally, the optimal pose estimation is obtained. 

The traditional visual odometry method [1, 2] estimates the motion of the camera by tracking the 

feature points between the sequence of image frames, estimates the pose of the current moment by 

accumulating motion between frames, and then transmits it to the back-end to reconstruct the 

environment. Visual odometry has a wide range of applications, can be applied to unmanned vehicle 

[3], drones [4, 5, 6], augmented reality [7] and so on. 

Compared with the traditional inter-frame estimation method based on sparse features or dense 

features, the deep learning-based method does not require feature extraction, and does not require 

feature matching and complex geometric operations, making the method based on deep learning more 

intuitive and concise, resulting in far-reaching significance for mobile robot navigation and location. 

In the deep learning method, Clark R et al. proposed using CNN and RNN to construct a VINet [8], 

which inputs image and IMU information and directly outputs the estimated pose. They use the deep 

learning method on the visual odometry to be very novel. But because their deep convolutional neural 

networks are supervised, a significant drawback of supervised deep learning methods is needed to use 

a large amount of manually labeled data for training. So Garg R [9] et al. proposed an unsupervised 

framework for depth prediction using a deep convolutional neural network without the need for prior 
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training and annotated ground-truth depths. Their network, under the same performance, has less than 

half the training time of other supervised methods. But they predict lower depth accuracy due to the 

use of a single image. Zhan et al. [10] differ from the popular network that gets depth from a single 

image, proposed a novel feature reconstruction loss to unsupervised predict single view depth and 

frame-to-frame odometry without scale ambiguity. But the disadvantage is that assumes no occlusion 

and the scene are rigid. Moreover, the depth warp constraints information of the image is not used. 

In this paper, we present a novel end-to-end visual odometry architecture with depth warp 

constraints loss based on unsupervised deep convolutional neural networks. We trained a 

convolutional network end-to-end to calculate depth and ego-motion from a continuous, unlabeled pair 

of images. The ego-motion is estimated with image projection constraints and depth warp constraints 

as supervisory information. 

2.  Preliminaries 

Our deep learning network consists of two parts: 

The first part of our construction is the depth convolutional neural network (Depth ConvNet). The 

input is the left and right RGB images of the binocular camera at the same time, and the output is the 

depth map corresponding to the pixel coordinates of the two RGB images. The depth map here is a 

combination of two constraints. The first constraints are LR Warp Loss and the second constraints are 

the joint constraints Depth Warp Loss. 

The second part of our construction is the visual odometry convolutional neural network (VO 

ConvNet). The input is two consecutive frames of RGB images from the right side of the binocular 

camera. The output is ego-motion between two consecutive frames of RGB images in the right eye of 

the binocular camera. Here VO ConvNet consists of two constraints, the first constraints are 2D Warp 

Loss and the second constraints are the joint constraints Depth Warp Loss. 

Finally, our network test in a single camera for pure frame-to-frame VO estimation without any 

mapping, and can predict ego-motion without any scale ambiguity. We performed a comprehensive 

evaluation of our model in the KITTI dataset [11, 12].  

3.  Algorithm Framework 

This section introduces our algorithm framework (shown in Figure 1), which learning the depth image 

, 1R t
D  and  

, 2R t
D  from the left and right images of the binocular camera at the same time and learning 

21
3T SE  from two consecutive frames. 

 
Figure 1. Algorithm Framework. 

3.1 Network Architecture 

Our network architecture is divided into two parts: 



AEMCME 2019

IOP Conf. Series: Materials Science and Engineering 563 (2019) 042024

IOP Publishing

doi:10.1088/1757-899X/563/4/042024

3

 

 

 

 

 

 

D
CNN is the Depth ConvNet for predicting the depth map, which using the encoder and decoder 

structure. For the encoder, in order to calculate the cost, we use the variant convolution network and 

the half filter (ResNet50-1by2) of ResNet50 [13].  

VO
CNN is a VO ConvNet for predicting 6-DoF visual odometry. The network consists of 6 

convolutional layers of two steps, followed by three fully connected layers. The last fully connected 

layer gives the 6D vector, which defines the transition 
21
T from the reference view to the warp view. 

3.2 LR Warp Module 

For a binocular camera, two frames of images at time 1t  are defined as: 
, 1L t
I  and

, 1R t
I . In addition, we 

define from 
, 1L t
I  through the polar line geometry warp to

, 1R t
I . The warped image is called ( _ )

, 1

LR Warp
R t
I

(The upper right corner symbol is generated in the LR Warp Module, which is distinguished from 

other modules. The other upper right corners have the same meaning). The time 2t  warp process is the 

same as time 1t . 

（ _ ）

, 1 , 1 , 1
= ( , , , )LR Warp

R t L t LR R t
I I K T Df   (1) 

（LR_Warp）

, 2 , 2 , 2
= ( , , , ) 

R t L t LR R t
I I K T Df   (2) 

The image construction loss LR warp loss of the LR Warp Module is represented by the following 

formula: 

( _ ) ( _ )

_ , 1 , 1 , 2 , 2
= ( )LR Warp LR Warp

LR Warp R t R t R t R t
L I I I I− + −   (3) 

3.3 2D Warp Module 

For a binocular camera, the two consecutive frames of the right-eye camera at time 1t  and time 2t  are 

defined as 
, 1R t
I  and 

, 2R t
I . We define from 

, 1R t
I  through the direct method warp to

, 2R t
I . The warped 

image is called (2 _ )

, 2

D Warp
R t
I . 

（2 _ ）

, 2 , 1 21 , 2
= ( , , , )D Warp

R t R t R t
I I K T Df   (4) 

The image construction loss called 2D Warp Loss of the 2D Warp Module is represented by: 

(2 _ )

2 _ , 2 , 2
= ( )D Warp

D Warp R t R t
L I I−   (5) 

3.4 Depth Warp Module 

We have learned from Fang at el [14] that the constraint formula between the depth maps 

corresponding to two consecutive frames is: 

( )

, 1 , 2

_= Depth
R t R t

WarpA D D −         (6) 

Where, 



AEMCME 2019

IOP Conf. Series: Materials Science and Engineering 563 (2019) 042024

IOP Publishing

doi:10.1088/1757-899X/563/4/042024

4

 

 

 

 

 

 

2

2 2

2

x 2 2

2 2
1

T

yx
y y x y

yx
x x y

yx
x y

x
x

y

y

yx
x y

ff
Y Z f Z XY Z Y

Z Z

ff
X Z f Z X Z XY

Z Z

ff
Z Y Z X

Z ZA
f

Z
Z

f
Z
Z

ff
Z X Z Y

Z Z

 
− − − − 
 
 

+ + + 
 
 
 − +
 =
 
 
 
 
 
 
 
 − − −
  

 

, 3u v se  =    

The gradient of the depth image of 
, 2R t
D  in A is expressed as ( , )

x y
Z Z Z = , which is obtained by 

the Sobel operator; where 
x
f and

y
f are normalized focal lengths, obtained by K . The 3D point 

( , , )R X Y Z=  is obtained by 
, 2R t
D  through the camera pinhole model: 

, 2

, 2 , 2

1

1

R t

R t R t

D

D D

uX

Y Z K v

Z

−

  
  
 = 
  

    

    (7) 

For binocular cameras, it is assumed that the 
, 1R t
D  represents the depth map corresponding to

, 1R t
I , 

which is learned by
D

CNN . 3se  is a Lie algebra representation of the relative camera pose 

transformation 
21

3T SE , which is learned by
VO

CNN . Then bring these variables into formula (6) to get: 

_( )

, 2 , 1

Depth Warp
R t R t
D D A= −    (8) 

The image reconstruction loss between the warp view ( )

,

_

2

Depth Warp
R t
D  and the real view 

, 2R t
D  is 

calculated as a supervised signal for training 
D

CNN  and
VO

CNN . Depth Warp Module's image 

construction loss Depth Warp Loss is represented by: 

( _ )

_ , 2 , 2
= ( )

Depth R t R
Depth Warp

War tp
L D D−   (9) 

3.5 Training loss 

As described in Section 3.2, Sections 3.3 and 3.4, the main monitoring signals in our framework come 

from image reconstruction losses, while LR warp loss acts as an auxiliary supervisor. In order to 

obtain smooth depth prediction, edge-aware smoothing loss is the formula: 
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Where, (.)
x
  and (.)

y
  are gradients in horizontal and vertical direction respectively. The final 

loss function becomes: 

  
2 2_ _ _ _ _ _

=
Warp Warp D Warp D Warp WarL p WarR LR Depth Depth dp s ds

L L L L L   + + +                 (11) 

Where, λ is the loss weight of each loss item and is obtained through training and fine tuning. 

4.  Result and Analysis 

To validate the performance of our depth warp Constraints-based network, we evaluate the 

performance of our network by following the Odometry Split. We first compared the results with the 

very popular SLAM system ORB-SLAM [17] (with and without closed loop) and then compared the 

results with the one-eye training network [18] of Zhou et al. Last but not least, the results are 

compared to the no depth warp constraints network of Zhan et al [10]. Regarding the KITTI Visual 

Odometry dataset evaluation criteria, we routinely used subsequences of length (100, 200 ... 800) 

meters and reported the average translation and rotation errors of test sequences 09 and 10 in Table 1. 

Table 1. Visual Odometry Result. 

 Seq. 09 

Terr(%) 

Seq. 10 

Rerr(°/100m) 

Seq. 10 

Terr(%) 

Seq. 10 

Rerr(°/100m) 

ORB_SLAM(LC) 16.23 1.36 / / 

ORB_SLAM 15.30 0.26 3.68 0.48 

Zhou et al. 17.84 6.78 37.91 17.78 

Zhan et al. 11.92 3.60 12.62 3.43 

Ours 5.73 2.66 8.54 2.74 

Visual odometry result evaluated on Sequence 09, 10 of KITTI Odometry dataset as shown in 

Table 1. Terr is average translational drift error. Rerr is average rotational drift error. It can be seen 

from Table 1 that even without any further post-processing to repair the warp scale, our stereo-based 

ranging learning method can be much better than the method [10]. Our unsupervised method is 

superior to previous unsupervised methods and has comparable results with the supervised method, 

which reflects the effectiveness and advantages of our approach. 

5.  Conclusion 

We propose an unsupervised learning framework based on depth warp constraints, which is used to 

train on binocular image data and then predict the ego-motion using visual odometry network on the 

monocular image. Our experimental results show that the accuracy and robustness of using binocular 

stereo sequences to learn these two tasks, using a binocular image to predict the depth map, and using 

a monocular image at different times to predict the relative pose of the camera. We also show the 

advantages of the single-view depth map predicted by the Depth Network using LR Warp Constraints, 

and the importance of the predicted depth map to the relative pose of the two frames of the subsequent 

predicted time series. In addition, we have proposed a novel Depth Warp Loss with the most advanced 

unsupervised single view depth and frame-to-frame odometry without scale ambiguity. 

In addition, although our results are better than the existing method of using unsupervised deep 

learning, the current results are not comparable to the most advanced SLAM system. However, the use 

of deep learning methods can avoid constructing image features, and the use of unsupervised methods 

can use a large amount of unlabeled data. This is a promising and challenging research direction, and 

is expected to bring more inspiration to SLAM research. 
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