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Abstract. In this paper, we focus on the two-coupled-oscillator model in optics chiral molecular 
medium. We perform scale transformations for variables and study the existence of periodic 
solutions in detail for the two-coupled-oscillator system. We obtain the Melnikov function by 
establishing the curvilinear coordinate transformation and constructing a Poincaré map. Then the 
existence of periodic solutions of this oscillator system is analyzed when unperturbed system is 
Hamiltonian system. We apply them to discuss the upper bound of periodic solutions of this 
oscillator system and give the configuration of the phase diagram by numerical simulation. It has 
great theoretical significance to study the non-planar motion of the two-coupled-oscillator 
system for analyzing dynamic characteristics in optics chiral molecular medium.  

1. Introduction 
Chiral material is a class of asymmetric substance that exists widely in nature. It has been widely 
studied because of its importance in many fields, such as biology, physics, chemistry and 
pharmacology, chiral phenomena. Chiral materials show some optical unique second-order 
nonlinearity. Characterization of chiral molecules and their media using nonlinear dynamics have 
significance for studying the molecular chiral structure and exploring new type of functional materials 
theoretically and practically. A class of chiral molecule have the following characteristics: there are 
two spatially separated but coupled clusters. The positive and negative electric centers of the two 
clusters do not coincide and vibrate under the action of the external field. This kind of molecule can be 
simplified as the two-coupled-oscillator structure. Condon [1] has successfully used the 
two-coupled-oscillator model to explain the linear optical rotation of molecules. Yin et al. [2] realized 
and discussed exact plasmonic analog in a system of corner-stacked gold nanorods. Manevitch et al. [3] 
considered the most simple nonlinear problem of energy transfer in the system of two weakly coupled 
nonlinear oscillators with cubic restoring forces. Zheng et al. [4] derived the hyperpolarizabilities of 
chiral molecules applied to the two-coupled-oscillator model and gave the expressions of 
hyperpolarizabilities with microscopic parameters. 

The description of the two-coupled-oscillator trajectories had been more investigated, but the 
vibrational behavior of the two-coupled-oscillator model is less studied. When there is no dissipative 
factor, the two-coupled-oscillator system is a conservative nonlinear dynamic system that has inherent 
dynamic characteristics. Therefore, it has great significance to study the periodic motion of the two- 
coupled-oscillator model. When 0=ε , the two-coupled-oscillator system degenerates to Hamiltonian 
system. Some scholars studied them and and got some results [5-14]. Kovačič [5-7] used the Melnikov 
method and the geometric singular perturbation theory to analyze the homoclinic orbits of singularities 
in resonance of Hamiltonian systems and near integrable dissipative systems. Yagasaki [8-9] 
developed the global perturbation method of Melnikov and studied the existence of two homoclinic 
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orbits for multiple degrees of freedom Hamiltonian perturbed systems. Li et al. [10] studied the 
periodic orbits and homoclinic orbits of dynamical systems by using the generalized Melnikov method. 
Llibre et al. [11] developed the high-order averaging method to calculate the number of periodic 
solutions of higher order equations and extended the averaging theory to the number of periodic 
solutions of arbitrary dimensional continuous differential equations. Han et al. [12] obtained a class of 
cubic Hamiltonian systems that have nine limit cycles under cubic polynomial perturbation. Li et al. 
[13] used the first-order Melnikov function method to study the upper bound of limit cycles of a class 
of third-order isochronous centers system. Li et al. [14] studied the existence and bifurcation of 
subharmonic solutions of a four dimensional slow-fast system with time-dependent perturbations for 
the unperturbed system in two cases: one is a Hamiltonian system and the other has a singular periodic 
orbit, respectively. 

In this paper, the existence and the upper bound of periodic solutions has been studied based on the 
improved the two-coupled-oscillator model. We give the nonlinear motion equation by the method of 
multiple scales and perform scale transformations for variables in detail for the two-coupled-oscillator 
system. Furthermore, the numbers and relative positions of the periodic solutions can be clearly found 
from the numerical results. 

2. The Two-coupled-oscillator System and Averaged Equation 
In this section, we investigate the multiple periodic solutions of the two-coupled-oscillator model. The 
oscillator vibrates under the force of an external field. The two-coupled-oscillator model is shown in 
figure 1, where m is the mass of two-coupled-oscillator model, 0x , 0y is the natural length of the two- 
coupled-oscillator model in x , y direction, 0l is the distance between the two-coupled-oscillator model 

in equilibrium position and 22
0

2
00 dyxl ++= , d is the space distance of the two-coupled-oscillator 

model.  
 

 
Figure 1. The two-coupled-oscillator model of the chiral molecules 

 
The vibration equations of the two-coupled-oscillator system is as follows [4]  
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where v and w are the direction of amplitude,γ is the damping constant, 2
1ω and 2

2ω are the frequency 
of oscillation respectively, 0a and 0b are the elastic coefficients of two-coupled-oscillator model 
respectively, 1f and 2f are the incident electric field, k is the coupling elastic coefficient. The other 
parameters are defined as follows 

0x 0y
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In this case of 1:1 internal resonance and primary parametric resonance , 
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where ε is a small parameter, 1σ and 2σ are two detuning parameters, and we assume that
121 =Ω=Ω=Ω . Then we perform scale transformations for variables are as follows.  

11 εγγ → , 
22 εγγ → , 

11 kk ε→ , 
22 kk ε→ , 

11 aa ε→ , 
22 aa ε→ 11 ff ε→ , 

22 ff ε→  

The equation of motion in ordinary differential form of two-coupled-oscillator system is obtained as 
follows 
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By the methods of multiple scales, the averaged equations is obtained as follows  
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jf )4,3,2,1( =j are polynomials in variables of ix )4,3,2,1( =i . 

3. Study on Periodic Solutions of the Two-coupled-oscillator System 

3.1. Transformations for the System  
For convenience, we introduce the following rescaling transformation  

ijij aa ε→ , uvuv bb ε→ , 3≥+ ji , 3≥+ vu  
Then system (2.3) can be rewrite as  

)(xFAxx ε+=                              (3.1) 
where 4

4321 ),,,( Rxxxxx ∈= Τ , Τ= ),,,()( 4321 FFFFxF is the vector-valued polynomials in 

variables of )4,3,2,1( == ixi . )()()()( 11
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denote an nm×  block matrix with the ),( ji -th block M , a smaller matrix, and all other blocks 
are zero matrices [15]. When 0=ε , system (3.1) degenerates to Hamiltonian system on plane 21xx and

43xx with Hamilton function ),()( 21 HHxH = and a family of periodic orbits. Where 
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Suppose that the family of periodic obits
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Then we get the corresponding period of the orbits are
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3.2. Melnikov Function and the Upper Bound of Periodic Solutions 
For convenience, we introduce curvilinear coordinates in the neighbourhood of hΓ . In order to 
construct the Poincaré map, we establish a curvilinear coordinate frame along hΓ in 4R . Then we 
define a global cross sectionΣ in the phase space, and construct the k th iteration of Poincaré map kp :

∑→∑ .  
We obtain the Melnikov function by establishing the curvilinear coordinate transformation and the 

Poincaré map kp . We need study the number of real solutions of 0),,( 321 == ΤMMMM which have 
nonzero Jacobian, where 
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3.3. The Upper Bound of Periodic Solutions
 We need consider the number of real solution of 0=M which have nonzero Jacobian. We discuss the 

following case. Assuming that 22 1111 == ab , 02526 =− aa , 024 =b . Then we have the period 
π2)(2)( 2211 == hThT  and M . 
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When 0)( 33
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33 ≠− aaa , the equations (3.6) are equivalent to the following equations by 

transformation. 
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We get at most two )2(cos 1
2 t from (3.7). For each solution, we can find at most four )2cos( 1t from 

(3.7). The number of solutions for in equation (3.7) is closely related to the number of periodic solutions 
of system (3.1). There are two ∗

1h and ∗
2h about the solution ),( 21 hhh = . So the system (3.1) most has 

four periodic solutions . 

3.4. Numerical Simulation  
In order to understand more intuitively, we give a set of fixed parameter and numerical simulation to 
obtain the phase diagram of the periodic solutions. We choose the perturbation parameter 0.001=ε . 
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Figure 2. Periodic orbits for UP  
 

Figure 2a-b and g-h, respectively, represent the 4 phase portraits on the plans 21xx and 43xx , and the 
phase portraits in the three-dimensional space 321 xxx , 432 xxx . Figure 2 c-d and e-f, respectively, 

represent the phase portraits in the three-dimensional space 321 xxx and 432 xxx when *1hh = and
*2hh = . 
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4. Conclusions  
In this paper, we studied the periodic solutions of existence and the upper bound of two-coupled- 
oscillator model in optics chiral molecular medium. We obtain the Melnikov function by establishing 
the curvilinear coordinate transformation and constructing a Poincaré map. The maximum number of 
two-coupled-oscillator system is 4.  

The two-coupled-oscillator model is a typical nonlinear dynamic problem of the interaction 
between oscillators. It has great theoretical significance to study the nonplanar motion of two-coupled- 
oscillator system for analyzing dynamic characteristics and studying influencing factors and also has 
great practical significance to solve the kinematic behavior of oscillator model in practice.  
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