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Abstract. The coupling of cavity noise and the structural vibration caused by the flow around 
the cavity at high speed will adversely affect the structure of the aircraft and threaten flight 
safety. Through the synchronous test method of noise and structural response, the test of 
acoustic/vibration coupling characteristics of the elastic cavity at supersonic condition in a 
wind tunnel was carried out, and the elastic cavity noise, structural vibration response 
characteristics and the coupling law were studied. The results show that the intracavity noise 
load mainly affects the low-order modal response of the cavity structure. Compared with the 
rigid cavity, the maximum position of the intracavity noise affected by the radiated sound wave 
is near the elastic boundary with strong vibration characteristics, and the noise peak frequency 
component is particularly affected. 

1.  Introduction 
The cavity structure is a typical structural form in the aerospace field, such as aircraft landing gear 
bays, buried weapon bays, combustion chambers, aircraft component joints, etc[1]. At supersonic 
speed, the high-intensity noise load induced by the flow around the cavity can easily cause the random 
vibration of the cavity structure and accelerate the crack formation, which leads to material fatigue 
failure and seriously threatens the structural safety of the aircraft[2]. It is of great practical significance 
to carry out research on the coupling characteristics of cavity acoustic and vibration. Aiming at the 
problem of unsteady flow and flow-induced noise in rigid boundary conditions, domestic and foreign 
scholars carried out a lot of research, and significant progress was made in these areas, such as the 
mechanism of cavity flow oscillation, and in-cavity acoustic modes coupling resonance characteristics, 
cavity noise/flow control mechanism[3-4]. However, in practical engineering applications, the cavity 
structure cannot guarantee complete rigidity and there will be elastic boundaries. Under the condition 
of high-speed inflow, the acoustic-vibration coupling problem of cavity with elastic boundary is 
complicated in numerical and theoretical research due to the coupling of structural vibration and cavity 
noise[5]. At present, there are a few related studies. Wagner and others[6-7] fixed a missile model in 
the cavity, and simultaneously measured the noise load in the cavity and the vibration acceleration of 
the model in three directions of space, studied the influence of the existence of the model on the sound 
field environment in the cavity, and the coupling law between the noise field and the model vibration. 
There is no perfect theoretical model for the vibration response of the elastic cavity wall under the 
excitation of high frequency pulsating pressure and the acoustic radiation generated by that[8]. 
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and power spectral density are usually used to describe their time domain statistical characteristics and 
their energy distribution in frequency. The function expression of each parameter is as follows[2]: 

T 2
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Where T is the sampling time, refP is the reference sound pressure of 52 10 Pa , and p% is the 
windowed amplitude spectrum of the noise load. 

4.  Vibration Response Characteristics of Elastic Cavity Structure 
Table 2 records the root mean square value of the structural vibration response at different acceleration 
points of the elastic cavity under Ma1.5 conditions. From the data in the table, the root mean square 
value of the vibration response at the acceleration measurement points of the cavity bottom plates A1, 
A2 and A3 is relatively close. The vibration response strength of the cavity bottom plate is much 
larger than that of the side wall and the rear wall. 
 

Table 2. Root mean square value of structural vibration response at different acceleration points 
of elastic cavity (g). 

Ma1.5 
cavity bottom plates cavity side wall cavity rear wall

Point A1 Point A2 Point A3 Point A4 Point A5 Point A6 
129.7 131.5 123.6 96.2 44.4 59.5 

 
Figure 4 shows the vibration response power spectrum of the elastic cavity structure under Ma1.5 

condition. Comparing the vibration response spectrum curves of different acceleration points, it is 
found that the peak of the vibration response spectrum of the elastic cavity wall occurs in the natural 
frequency of the structure and the peak frequency of the noise, and it is mainly concentrated below 
1000 Hz. As the elastic structure modal test results recorded in Table 1, it can be seen that the fifth-
order natural frequency of the elastic cavity is 847 Hz, which indicates that the intracavity noise 
mainly affects the low-order modal response of the structure and has little influence on the high-order 
modal response. It can be seen from Fig. 2 that the low-order mode shape of the cavity is mainly 
embodied on the bottom plate of the cavity, and the modal displacement of the side wall and the back 
wall is small. The high-order mode shape is more obvious on the side wall and the back wall, but the 
higher-order modes contribute less to the structural vibration response. Therefore, during the actual 
vibration process, the vibration strength of the cavity floor is the largest, and the vibration of the side 
wall and the front and rear walls is relatively weak, which is consistent with the results in Table 2. 
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Figure 4. Vibration response power spectrum curve of elastic cavity structure under Ma=1.5 
condition. 

5.  Elastic Cavity Noise Characteristics 
Figure 5 and Figure 6 are the results of the sound pressure power spectrum comparison between the 
elastic cavity and rigid cavity, which was measured at the leading edge of the bottom plate and at the 
center point of the rear wall. The comparison shows that for the elastic cavity, the peak height of the 
main frequency of the cavity is lower than that of the rigid cavity under the condition of Ma1.5, 
indicating that the existence of the elastic boundary reduces the intensity of the intracavity noise at the 
main frequency position. However, as can be seen from the results of Figure 5, the sound pressure 
power spectrum curve of the elastic cavity noise load shows peaks not found in the sound pressure 
power spectrum curve of the rigid cavity noise load at some frequency positions, further indicating the 
influence of the elastic boundary. Whether the cavity noise intensity is enhanced or weakened is 
related to the phase of the structured radiated sound wave and the phase of the noise generated by the 
cavity flow oscillation. 
 

 

Figure 5. Comparison curve of sound 
pressure power spectrum of noise load at the 
leading edge of elastic cavity and rigid cavity 

bottom plate at Ma=1.5. 

Figure 6. Comparison curve of sound 
pressure power spectrum of noise load at the 

center point of elastic cavity and rigid cavity at 
Ma=1.5. 
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6.  Conclusion 
Aiming at the vibration response characteristics and cavity noise characteristics of the elastic cavity 
structure at supersonic speed, the coupling effect analysis of cavity noise and structural vibration 
response was carried out by means of wind tunnel test and cross-correlation analysis. The results show 
that under the condition of supersonic flow, the structural vibration and noise load are most likely to 
couple at the main frequency position of the noise, which can cause the structure to have strong 
vibration at the frequency, however the vibration of the elastic boundary will reduce the intensity of 
the main frequency of the noise to a certain extent. 

The vibration response of the elastic cavity structure is mainly concentrated on the bottom plate of 
the cavity, and the vibration response of the side wall and the front and rear walls is relatively small; 
due to the elastic boundary, whether the cavity noise intensity is increased or weakened relative to the 
rigid cavity is related to the phase of the radiated acoustic wave of the structure and the phase of the 
noise generated by the flow oscillation. 
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