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Abstract. We have investigated thermal effect on band gaps of shear horizontal (SH) waves 
propagating through a layered metallic periodic structure. For a metallic material, the lattice 
length varies slightly with temperature while the Young’s modulus is strongly thermosensitive. 
Firstly, the dispersive equation without thermal effect was derived by the transfer matrix 
method. Secondly, the thermal effect on the material coefficients was investigated. Finally, the 
dispersive curves at different temperatures with changing incident angles were drawn. It 
reveals that the band gaps get a greater impact in high-frequency regions than those in low-
frequency regions. The results can provide theoretical basis for the production of phononic 
crystals. 

1. Introduction 
Due to the stop band characteristic, phononic crystal (PC) is useful in anti-vibration, noise reduction, 
wave guides, and so on, showed by Xiao et al [1], Ji et al [2] and Qin et al [3]. Many researches were 
focused on various factors that influence the band gaps of PCs. Wang et al [4] studied the stop band 
properties of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress 
taking the mechanical and electrical coupling into account. Ding et al [5] investigated ways for 
controlling and adjusting the longitudinal wave band structures of one dimensional rod phononic 
crystals with magneto-strictive material by the plane wave expansion method. Guo et al [6] studied the 
effects of mechanically and dielectrically imperfect interfaces on dispersion relations of elastic waves 
in a one-dimensional piezoelectric phononic crystal.  

The temperature also has evident effect on band gaps. There has been some research [7-9] on the 
thermal tuning of band structures. Of course, although there have been many studies about thermal 
tuning of band structures, the approaches are still not thoroughly investigated. In this paper, the 
thermal effect on the band gaps of the one-dimentional metallic phononic crystal composed of two 
different metal materials are consided. The dispersive equation is derived and the band gaps of 
metallic PCs are showed in figures 1.   

2. Band Gaps of Phononic Crystals 

2.1. Dispersion Relation by the Transfer Matrix Method 
When the elastic waves propagate through a periodic structure band gaps will occur. The layered 
metallic structure will be chosen here. The PC system consists of two different materials denoting by 
A and B. In one unit cell, the length of phase A is 𝑎 while it of phase B is 𝑏. Hence, the lattice length 
𝑑 = 𝑎 + 𝑏. Let the 𝑧- axis is the poling direction and the slab is transversely isotropic in the 𝑜𝑥𝑦 
coordinates plane. The motion equation of isotropic elastic media is 



7th Annual International Conference on Materials Science and Engineering

IOP Conf. Series: Materials Science and Engineering 562 (2019) 012032

IOP Publishing

doi:10.1088/1757-899X/562/1/012032

2

μ∇2u + (𝜆 + μ)∇(∇ ∙ u) = 𝜌
𝜕2u
𝜕𝑡2

 
     (1) 

where 𝜆  and μ  are Lamé constants, ρ  is the mass density, u  is the displacement vector, and 
u={0,0,𝑤(𝑥, 𝑦)} for obliquely propagating SH waves. The displacement 𝑤𝐴(𝑥,𝑦) in the component A 
can be expressed as 

                     𝑤𝐴(𝑥,𝑦) = [𝐼𝑛𝐴exp (𝑖𝑘𝑥𝐴𝑥cos𝜃1) + 𝑅𝑛𝐴exp (−𝑖𝑘𝑥𝐴𝑥cos𝜃1)]𝑒(𝑖𝑘𝑦𝑦−𝑖𝜔𝑡)                    (2) 

where 𝐼𝑛𝐴 and 𝑅𝑛𝐴 are the amplitudes of the incident and the reflected SH-waves in the 𝑛-th unit cell, 
respectively; 𝑘 is the wave number, 𝑘𝑥(= 𝑘cos𝜃1) is the transverse wave number, and 𝑘𝑦(= 𝑘sin𝜃1) 
is the apparent wave number.  

Then the stress 𝜏𝑧𝑥𝐴 (= 𝜇𝐴 𝜕𝑤𝐴 𝜕𝑥⁄ ) can be expressed as 

              𝜏𝑧𝑥𝐴 (𝑥,𝑦) = 𝑖𝑀𝐴[𝐼𝑛𝐴 exp(𝑖𝑘𝑥𝐴𝑥cos𝜃1)− 𝑅𝑛𝐴exp (−𝑖𝑘𝑥𝐴𝑥cos𝜃1)] 𝑒(𝑖𝑘𝑦𝑦−𝑖𝜔𝑡)                    (3) 

where 𝑀𝐴 = 𝜇𝐴𝑘𝑥𝐴𝑐𝑜𝑠𝜃1. The displacement 𝑤𝐵(𝑥, 𝑦)  and the stress 𝜏𝑧𝑥𝐵 (𝑥,𝑦) in the component B can 
be gotten in the same way as follows, 

                         𝑤𝐵(𝑥,𝑦) = [𝐼𝑛𝐵exp (𝑖𝑘𝑥𝐵𝑥cos𝜃2) + 𝑅𝑛𝐵exp (−𝑖𝑘𝑥𝐵𝑥cos𝜃2)]𝑒(𝑖𝑘𝑦𝑦−𝑖𝜔𝑡)                    (4) 

                        𝜏𝑧𝑥𝐵 (𝑥,𝑦) = 𝑖𝑀𝐵[𝐼𝑛𝐵 exp(𝑖𝑘𝑥𝐵𝑥cos𝜃2)) −𝑅𝑛𝐵exp (−𝑖𝑘𝑥𝐵𝑥cos𝜃2)] 𝑒(𝑖𝑘𝑦𝑦−𝑖𝜔𝑡)              (5) 

where 𝑀𝐵 = 𝜇𝐵𝑘𝑇𝐵𝑐𝑜𝑠𝜃2. 
Supposed a state matrix  
                                                                𝐕𝑗 = �𝑤𝑗, 𝜏𝑧𝑥

𝑗 �T                                                                 (6) 
where  𝑗 = 𝐴,𝐵 . Supposed that the interfaces between the components A and B are connected 
perfectly, the following relationships will be gotten, 

                                                    𝐕𝑅𝑡𝐴 = 𝐓1𝐕𝐿𝑡𝐴 , 𝐕𝑅𝑡𝐴 = 𝐕𝐿𝑡𝐵 , 𝐕𝑅𝑡𝐵 = 𝐓2𝐕𝐿𝑡𝐵                                           (7) 

where the subscripts 𝑅𝑡 and Lt denote the right and left sides of the sub-layers, respectively. By 
equations (6) and (7) it can be derived that 

       T1 = �𝑃𝑖𝑗�                                                                       (8) 

where 𝑃11 = 𝑃22 = 𝑐𝑜𝑠𝛼, 𝑃12 = 𝑐𝑜𝑠𝛼 𝑀𝐴⁄ ,𝑃21 = −𝑀𝐴𝑐𝑜𝑠𝛼, 𝛼 = 𝑘𝑇𝐴𝑎𝑐𝑜𝑠𝜃1, and 

     T2 = �𝑄𝑖𝑗�                     (9) 

where 𝑄11 = 𝑄22 = 𝑐𝑜𝑠𝛽, 𝑄12 = 𝑐𝑜𝑠𝛽 𝑀𝐵⁄ ,𝑄21 = −𝑀𝐵𝑐𝑜𝑠𝛽, 𝛽 = 𝑘𝑇𝐵𝑏𝑐𝑜𝑠𝜃2. 
Because of the perfectly connected interfaces, we obtain the following result from equation (7) 

                                                                𝐕𝑅𝑡𝐵 = 𝐓2𝐓1𝐕𝐿𝑡𝐴                                                                  (10) 

Meanwhile, the Bloch theorem requires the displacement and stress in a periodic structure satisfy 

                                                                𝐕𝑅𝐵 = 𝑒𝑖𝜅𝑑𝐕𝐿𝐴                                                                    (11) 

Equations (10) and (11) yield the following dispersive equation 

                                                              �𝐓2𝐓1 − 𝑒𝑖𝜅𝑑𝐈� = 0                                                             (12) 

that is, 

cos(𝜅𝑑) = cos�𝑘𝑇𝐴𝑎cos𝜃1� cos(𝑘𝑇𝐵𝑏cos𝜃2) − (𝐹𝐵 𝐹𝐴⁄ + 𝐹𝐴 𝐹𝐵⁄ ) 2⁄ … 

                                                      × sin�𝑘𝑇𝐴𝑎cos𝜃1� sin(𝑘𝑇𝐵𝑏cos𝜃2)                                             (13) 

where𝐹𝑗 = 𝜌𝑗𝑐𝑇
𝑗cos𝜃𝑖, 𝑖 = 1,2,  𝑘𝑇𝐵sin𝜃2 = 𝑘𝑇𝐴sin𝜃1  , 𝑘𝑇

𝑗 = 𝜔 𝑐𝑇
𝑗⁄ , 𝑐𝑇

𝑗 = �𝜇𝑗 𝜌𝑗⁄  is the shear wave 

velocity, 𝑗 = 𝐴,𝐵, therefore sin𝜃2 = sin𝜃1
𝑐𝑇
𝐵

𝑐𝑇
𝐴. 
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2.2. Material Coefficients with Changing Temperature  
We assume that the expansion coefficient α  of hard Aluminum alloy (LY) is independent of 
temperature between 0 and 800 degrees centigrade, because Al alloy has good thermal resistance 
property. To model the effect of temperature more accurately, the change of lattice length should also 
be taken into account. The density ρ changes with the volume affected by the temperature. The PC 
system is infinite on the 𝑦-direction, and the change of the length Δd on the 𝑥-direction is very tiny, 
because that 

                                                                Δd = α𝑑0Δ𝑇.                                                                    (14) 

For the metals the size of α is about 1e-6 and that of 𝑑0 is about 1e-2. In the temperature scope of 
0~800°C Δd 𝑑0⁄ = αΔ𝑇 < 0.02 which is too tinny to make influence on dispersive curves. So Δd can 
be omitted. Hence, the density ρ is supposed to be unchanged with temperature. 

In a word, the effect of temperature on the wave velocity is mainly on the Young’s modulus 𝐸.The 
Young’s modulus 𝐸 of Al alloy can be expressed as 

                                                           𝐸 = 𝐸0(1 − 25αT) ,                                                             (15) 

where α = 23.03 × 10−6 is the expansion coefficient. From equation (15), it can be found that elastic 
modulus decreases linearly with the increasing temperature if the expansion coefficient keeps constant. 
The material coefficients of Al Alloy are 𝜌 =2700 𝑘𝑔/𝑚3, 𝐸 = 71GPa and 𝜎 = 0.42 at 25°C. 

Supposed that the temperature hardly has effect on Poisson Ratio σ, then 𝐸0 =72GPa by equation 
(16). The wave velocity changing with temperature can be derived from equation (14), 𝑐𝑇𝐴 = 3168m/s 
at 25°C, 2912m/s at 300°C and 2685m/s at 500°C.  

We choose the phononic crystal with the Pb as phase B to observe the thermal effect on band gaps, 
because the temperature   hardly has effect on material coefficients of Pb. The material constants of Pb 
are 𝜌 =11600 𝑘𝑔/𝑚3, 𝐸 = 17GPa and 𝜎 = 0.42 at various temperatures. Therefore, the wave velocity 
of the material Pb 𝑐𝑇𝐵 = 718m/s is derived. 

2.3. Band Gaps with Temperature 
Now the band gaps of the phononic crystals consisting of different components will be drawn. In the 
figures the thermal effect is the main object. The material Pb which has the excellent thermal 
impedance is chosen as the phase B. We have to widen the temperature scope to 25~500°C, because 
the influence of temperature on band gaps is too small to be observed in the range of 0~100°C. In fact 
the temperature around 25°C (room temperature) don’t have a large enough effect to change the 
material properties. The length ratio of  the phase A and phase B is 2:1. 𝜅𝑛𝑑 and 𝜔𝑛𝑑 are respectively 
dimensionless x and y labels where 𝜅 = 𝜅𝑛𝑑 𝜋 𝑑⁄  and 𝜔 = 𝜔𝑛𝑑 2𝜋𝑐𝑇𝐵 𝑏0⁄ .  

 

 

(a) =1°

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

n d

0

0.5

1

1.5

2

n
d

T=25 ℃

T=300 ℃

T=500 ℃



7th Annual International Conference on Materials Science and Engineering

IOP Conf. Series: Materials Science and Engineering 562 (2019) 012032

IOP Publishing

doi:10.1088/1757-899X/562/1/012032

4

 

.  

 

Figure 1. Dispersive curves at different incident angles with various temperatures. 
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Figures 1(a) to 1(d) show the band gaps for oblique incident SH-wave at four different incident 
angles with various temperatures. The frequency domains with dispersive curves are pass bands while 
those without curves are band gaps. To quantify the temperature effect on the band structures, we 
investigate how the dispersive curves, mid-frequencies and widths of band gaps change with the 
temperature. 

From figure 1, it can be found that:  
(1)Temperature influents the dispersive curves more slightly compared with packing ratio, stiffness 

coefficients, and so on. (2) As temperature increases the curvature of dispersive curves decreases, that 
is, the curve flattens. (3) With the rise of temperature the dispersive curves shift to lower frequency 
domain, all of the band gaps become wider, and meanwhile the mid-frequencies turn to lower 
frequency domain. (4) In the same frequency domain, band gaps in higher temperature region take a 
larger share than in lower one. (5) With the increasing of incident angle, the temperature effect on 
dispersive curves gets much smaller. (6) The temperature has more effects on the dispersive curves in 
higher frequency domain than that in lower frequency domain.  

To model the effect of temperature more accurately, the change of lattice length should also be 
taken into account. But in the temperature scope of 30~300°C Δd 𝑑0⁄ = αΔ𝑇 < 0.02 which is too 
tinny to make influence on dispersive curves. 

3. Conclusion 
For the metallic phononic crystals, the temperature has less obvious effect on the dispersive curves 
compared with the other material parameters like the packing ratio, the stiffness coefficients, and so on. 
For all incident angles the temperature makes the dispersive curves flatter so that all of the band gaps 
become wider. It can be predicted that the temperature can be used to enlarge the band gaps of the 
temperature-sensitive materials. The change range of the Young’s modulus with temperature plays a 
major role, so if a thermosensitive PC is expected at least one of the components must have strongly 
temperature-depending Young’s modulus.  
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