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Abstract. This paper deals with the statistical fracture mechanical method for the optimal 

design of forest machine components.  The problem of optimal design includes the choice of 

the objective function and independent design variables and establishment of the system limits. 

The objective function is determined as the mean total cost that includes the initial cost and the 

cost of failure according to the failure probability. A quasi-brittle fracture occurs under the 

influence of the stationary random process of loading. Analytical equations of reliability 

function estimation are obtained. The algorithm of the random search method includes an 

interval reduction with regard to zone and functional constraints. The approach to the optimal 

design problem solution can be applied to obtain optimal geometrical sizes and permissible 

limit defect values of machine components. 

1.  Introduction 

Forest machines failures are usually classified according to their causes in design defects, manufacture 

error failure and misuse failure. Cracks usually originate in the maximum stress action zone.  

Therefore, defects arise as a result of imperfection or violation of design rules, a manufacturing 

process or conditions of exploitation [1,2]. It is necessary to determine geometrical sizes and ultimate 

defect values of machine components during the design stage. 

Optimal design of machine components is an important problem attracting interest of many experts 

in Russia and abroad [2–4]. The statement of the optimization problem includes definition of the 

system constrains, selection of the objective function and independent design variables (optimized 

parameters) [5]. In a number of situations, it is important to achieve maximum life of a machine part 

(reliability of the system). Therefore, it is better to choose an efficiency index considering both 

reliability during exploitation and manufacturing cost. To minimize the total expected costs, the single 

criterion design of the minimum total cost expenses is formulated as follows:  

 XCXC T
X

T


 min)( *
,     

when the following conditions are held: 

maxmin XXX   – constraint zones, 

  0XF   – functional constraints, 

where *X  is the optimal value of the design parameters vector X  that minimizes the objective 

function;   is the tolerance range of vector X, including constraint zones and functional constraints. 

The vector of design parameters X  is given by: 
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     lxxX m1 ,,..., , 

where jx  are optimized parameters; 

             l is the crack-like defect size (length). 

We impose side constraints on crack-like defect sizes (lengths), depending on manufacturing 

processes. Functional constraints may be also imposed on some machine parameters such as mass, 

stress-strain properties, rigidity, etc. 

Mean total expected costs are: 

  



n

i

iiT CQXCXC

1

21)( ,    

where C1 is the initial cost, C2i is the cost of failure and Qi is the failure probability for the mode of 

failure i, n is the total number of possible modes of failure. 
The aim of this study is to present the fracture mechanics method for the optimal design of forest 

machine components. Statistical fracture mechanics methods allow the estimate of the reliability 

function dependence on crack-like defect length. 

2.  Materials and methods 

Evaluation of the reliability function in terms of fracture mechanics. The critical plane-strain fracture 

toughness K1C, determined experimentally, is assumed as the material resistance index against the 

quasi-brittle fracturing under single loading [6]. 

The reliability function should be determined as the probability:  

     0KKR 1C1  Pr , 

where K1 is the stress intensity factor. 

We know [7, 8] that: 

    llYK1  πσ)( , 

where Y(l) is a dimensionless geometry factor, depending on the machine part shape and crack’s 

length (semilength); σ is the maximum applied stress; l is the crack length (semilength). 

By assuming that the stress on the machine part is a stationary random process σ(t) with mean σ  

and spectral density )ωσ (S , the stress intensity factor can be formulated: 

    )()()( tllYtK1 σπ  . 

It is evident that spectral density of the stress intensity factor: 

    )) ωω σ(Slπ(l)Y(S IK  . 

If )(tK1  – a differentiable stochastic process: 

dt

tdK
t I )(
)( υ . 

It is necessary to estimate the probability of the situation when the random process )(tK1  exceeds the 

bounds of K1C i.e. it will cross the given level (Figure 1).  

 

Figure 1. Sample of random process )(tK1 . 



MEACS2018

IOP Conf. Series: Materials Science and Engineering 560 (2019) 012085

IOP Publishing

doi:10.1088/1757-899X/560/1/012085

3

 

 

 

 

 

 

In general terms the mean number of K1C level crossings (overshoots) during time τ  [9]: 


τ

0
ICK+ dttP=(τN )() , 

where )(tP
ICK  – temporary probability density. Temporary probability density )(tP

ICK  presents the 

mean number of overshoots by the random stationary process )(tK1  per time unit. 

In case of a random stationary process (
ICKICK PtP )( ): 

ICK+ Pτ=(τN ) . 

In case of Gaussian random stationary process: 
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where IK  – the random process mean value: 

    σ lπ(l)Y=K II ; 

          2
Kσ  – the random process dispersion: 

    


0

) ωωσ d(S= K
2
K ; 

          2
υσ  – the random process rate of dispersion change; 

           eω  – the effective frequency of the random process:  
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in this case: 
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If the mean number of overshoots )(τN+  is rather low, we can consider overshoot appearances as 

statistically independent events following the Poisson distribution law [10]. Therefore, the reliability 

function is estimated under the condition that none overshoots occur during time τ : 
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In case of Gaussian random stationary process: 
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The failure probability: 
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3.  Results and discussion 

A great many algorithms of optimal problem solution are based on direct search methods. An 

algorithm of the random search method with an interval reduction can be used to solve the original 

problem [5]. Statistical modeling of the optimized parameters vector X  is possible by using Monte 

Carlo technique simulation: 

 I1
m

1
2

1
1

1
I lxxxX ;;...;; ; 

  1
j

1
jj

1
j

1
j xxrxx minmaxmin  , 

where jr  is a generated random number; 1
j

1
j xx minmax ,  are upper and lower bounds of optimized 

parameter 1
jx . 

If the obtained vector 1
IX  is contained in the acceptable region  , including constraint zones and 

functional constraints, then the objective function value can be defined: 

 1
IT

1
T XCC  . 

The optimization method allows performing computations in accordance with the given number of 

random tests N to obtain values of objective function 2
TC , …, N

TC . 

Therefore, the value *
IX  of the optimized parameters vector that minimizes the objective function 

 **
IT

I
T XCС   is obtained. This value is entered for storage and is used as the starting point of the 

next set of tests; at the same time the boundaries of a new interval are reduced. 

Using the same procedure, let us perform k test sets and obtain: 

 ***
IIT

II
TII XCCX  ; ...;  ***

kT
k
Tk XCCX  . 

The number of test sets depends on the required accuracy of objective function calculations Δ: 

         
**

1kTkT XCXC . 

4.  Conclusion 

The proposed approach to the design problem enables us to obtain optimal geometrical sizes and 

maximum allowable defect values of machine components. The statistical optimization allows us to 

give recommendations for engineering of forest machine and equipment elements in terms of fracture 

mechanics. 

Acknowledgments 

This work was supported by the Strategic Development Program of Petrozavodsk State University 

(2017-2022). 

References 

[1] Anderson T L 2004 Fracture Mechanics: Fundamentals and Applications (CRC: Press-Book) 

[2] Pitukhin A V 1997 Computers and Structures 65 (4) 621-624 

[3] Pitukhin A V and Skobtsov I G 2015 Appl. Mechan. and Mater. 709 530-533 

[4] Banichuk N V, Ragnedda F and Serra M 2003 Mechan. Based Des. of Struct. and Machin. 31(4) 

459–474 

[5] Ravindran A, Ragsdell K M and Reklaitis G V 2006 Eng. Optimiz. Meth. and Applic. 

(Hoboken: John Wiley & Sons) 

[6] Zhu X and Joyce J A 2012 Eng. Fract. Mechan. 85 1-46 

[7] Irwin G R 1948 Fracturing of Metals 147-166 

[8] Broek D 1982 Elementary Eng. Fracture Mechan. (Martinus Nijhoff Publishers: The Hague) 

[9] Rise S O 1945 Bell System Tech. J. 24 46-156 

[10] Sveshnikov A A 1966 Appl. Methods of the Theory of Random Funct. (New York: Pergamon 

Press) 


