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Abstract. This paper proposes an algorithm for identifying the dynamics of a slide valve with 

errors in variables. Estimation of nonlinear parameters of exponential functions in the presence 

of noise is associated with known difficulties. The paper proposes a transition from a nonlinear 

in the estimated parameters of the static model to a linear in the parameters of the dynamic model. 

The estimation of the parameters of the dynamic model is carried out on the basis of the solution 

of the bias normal system of algebraic equations. The biased normal system of algebraic equa-

tions is often ill-conditioned. The paper proposes estimating parameters with a method based on 

equivalent extended systems. In testing algorithms, it was found that when there were errors in 

measurements related to the rod, the proposed algorithm yielded more accurate parameter esti-

mates as compared with the least-squares technique. The proposed algorithm for estimating the 

parameters of slide valve will increase the accuracy of the control systems, as well as can be used 

to control the serviceability of slide valve. 

1.  Introduction 

The widespread use of hydraulic drives in various machine-building industries such as machinery and 

construction, road, agricultural, and transportation equipment is due to the substantial benefits that hy-

draulic drives have over other types of drives. The benefits include high energy capacity, compactness, 

low response time, ease of operation, and the possibility of providing efficient arrangement and high 

gear ratios [1]. 

The hydraulic drive makes it possible to proceed with creating highly automated machines, robot and 

hydraulic-pulse systems, and other new equipment. Developing methods for making mathematical 

models for hydraulic-drive systems with experimental data is a relevant problem. 

The key component of a hydraulic drive is a slide valve. Slide-valve models with a priori known param-

eters are treated in [2–5]. Reference [6] proposes a model with parameter identification. [7] proposes 

models with a small number of parameters. One of the models proposed in [7] is based on identifying 

parameters for an exponential function. 

None of the papers deals with the effect that noise has on estimation accuracy. This paper addresses 

model identification [7] in the presence of observation noise on the basis of extended systems [8]. 

2.  Materials and methods 

The figure 1 shows and measuring the shift of the valve rod of 4/3 of the spool-type electro-hydraulic 

distributor. 
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Figure 1. 4/3 of the spool-type electro-hydraulic distributor. 

The figure 1 shows 4/3 of the spool-type electro-hydraulic distributor, in which are indicated: “Z” is 

control spool; “A” is the coil of the electromagnet “a”; “B” is electromagnet coil “b”; “A” is the 

connector of the electromagnet coil “a”; “B” - the connector of the electromagnet coil “b”; “DP” is an 

inductive position control sensor. The redistribution of the distributor occurs when exposed to 

electromagnetic radiation (a, b). Return to the middle position (without current) produce control springs. 

The position of the spool is controlled by a sensor (DP), which generates a current signal (4-20mA) with 

interference, after which it becomes a normalized interleaving signal (X). 

3.  Identifying the dynamics of a slide valve 

The shift of the valve rod at constant current under zero initial conditions in the range of min max

kx x x   

is given by: 

  1 exp ,k kx A T  
    (1)  

where ,kT k t  t  is a sampling interval. 

The delay 1   is obtainable from (1). 

As the parameter   enters equation (1) nonlinearly, the parameter is difficult to estimate. The 

traditional approach, which involves taking the logarithm of (1), does not yield sufficiently accurate 

estimates when there are measurement errors. 

This is due to the following: 

1. It is assumed that noise enters the model multiplicatively: 

    1 exp exp ,k k kx A T    
 

k
  is an independent arbitrary value with the zero mean and the dispersion   2

k    .  

The logarithm method cannot be used when noise is additive: 

.k k ky x  
 

2. The expression  exp k  makes the nature of the stochastic component heteroscedastic. 



MEACS2018

IOP Conf. Series: Materials Science and Engineering 560 (2019) 012021

IOP Publishing

doi:10.1088/1757-899X/560/1/012021

3

 

 

 

 

 

 

3. Minimizing the logarithm of an error function is not always equivalent to minimizing the error 

function itself. 

An alternative approach involves expressing equation (1) with a difference equation. Since 

expression (1) contains a constant coefficient, we will write a difference equation in relation to first-

order differences for 2k  : 

1,k kx b x   
 

,k k ky x    
       (4) 

where exp( ),b t    

The forecast error for model (4) can be written as: 

1,k k ky b y     
 

 1 1 21 ,k k k k k kb b b             
.    (5) 

The use of the classical least-squares technique does not allow valid parameter estimates to be ob-

tained for equation (4) because of the autocorrelation in the forecast error k . Let us determine error 

dispersion for k : 

     
22 2 2 2 2 2 2 2

21 2 1 .kE b b с b b              
 

Unbiased coefficient estimates are obtainable from the minimum condition for the criterion: 

     

 
2

1

1

2
min .

1

N

k k

i

b

y b y

b b





  

 


       (6) 

The criterion minimization (6) can be based on a solution to a biased normal system.  

   
1

2 2ˆ ,T Tb Y


      
    (7) 

where  3, , ,
T

NY y y    2 1, , ,
T

Ny y     

 min ,Y     is the minimal singular value for the matrix  ,Y . 

Reference [9] reports that the summand  2  in expression (7) makes it impossible to calculate b̂  

with efficient numerically stable methods that do not involve first forming the matrix 
2T   . 

Reference [8] proposes using an extended system that is equivalent to the biased normal system: 

,b Y        (7) 

or 

0

0 0

ˆ0T

I r Y

I j r

j b



 

    
    
     
          

.    (8) 

System (8) is solvable with standard methods for solving linear algebraic equation systems—for 

example, with LU decomposition [10]. 

Using the estimate of b̂ , we can find an estimate for ̂ : 

 1 ˆˆ ln b
t

  
 , 

then  

 
ˆ .

ˆln

t

b


  
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4.  Simulation results 

As a test example, we used the model: 

1 exp( 70 ) ,k k ky T      . 

The number of observations: 20.N   

The sampling time: 0.004t  s. 

Figure 2 shows a true model of transient response and model with measurement errors. 

 

 
Figure 2. Transient responses of slide valve dynamics: 1 – true model of transient response, 2 – model 

with measurement errors. 

We used the relative mean-square error of parameter estimation as a quality indicator for the model: 
2

0
02

ˆ

100 .
b b

b
b




   

Table 1 shows parameter estimation errors for Least Square and proposed algorithm. 

Table 1. Parameter estimation errors  

/ x   b  for LS (%) b  for  

criterion (8) (%) 

0.001 2.62 1.51 

0.002 3.81 2.12 

0.003 5.77 2.64 

0.005 9.36 4.62 

The obtained results confirm the high accuracy of the proposed identification algorithm as compared 

with the least-squares technique. 

5.  Conclusion 

This paper proposed an algorithm for identifying the dynamics of a slide valve with errors in variables 

on the basis of extended systems. The simulation results showed that the proposed algorithm is superior 

in accuracy to the least squares method. The proposed algorithm for estimating the parameters of slide 
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valve will increase the accuracy of the control systems, as well as can be used to control the servicea-

bility of slide valve. Further research will focus on testing the algorithm on actual slide valves and on 

generalizing results for the case of colored noise [11, 12]. 
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