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Abstract. In this work, a carbazole-substituted stilbene derivatives hole transporting material, 

9,9'-(ethene-1,1-diylbis(4,1-phenylene))bis(3,6-dimethoxy-9H-carbazole) (EPC) was 

designed and synthesized. The structure was characterized by FT-IR spectroscopy, 1H NMR, 13C 

NMR and MS. The glass transition temperature is 95.09°C and the 5% weight loss temperature 

is 423.37°C by DSC/TG analysis. Through the UV-Vis absorption spectrum combined with 

cyclic voltammetry, the energy level of the highest occupied molecular orbital (HOMO) of EPC 

and the lowest unoccupied orbital (LUMO) energy level were obtained (-5.38 eV, -2.19 eV). The 

energy level is well matched with methylamine lead iodine crystals. A mesoporous structure 

perovskite solar cell was fabricated based on the undoped EPC, and photoelectric conversion 

efficiency of 13.11% was obtained. After 600 hours of storage in a dark environment at 25°C 

and 60% relative humidity, 82% of the initial efficiency was obtained. This work provides new 

ideas for the development of undoped hole transporting materials. 
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1. Introduce 

Since 2009, organic-inorganic perovskite solar cells (PSCs) have been received attention due to their 

advantages in photovoltaic performance, preparation process, and cost. The highest efficiency has 

exceeded 22%. [1-5] 

The hole transporting layer is an important structure in the perovskite solar cell and is a physical / 

energy barrier between the cathode and the perovskite layer, blocking the transfer of electrons to the 

cathode while promoting hole transporting. [6, 7] At present, the hole transporting materials for perovskite 

solar cells include p-type inorganic semiconductors (CuI [8], CuSCN [9], NiO [10]), polymers (P3HT [11], 

PTAA [12], PEDOT: PSS [13]), and organic small molecule compounds. [14-17] Because of easy purification 

and good film properties, triarylamine compounds are the most abundant hole transporting materials, 
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and the highest photoelectric conversion efficiency (PCE) is obtained in the cells using spiro-OMeTAD. 

[18] However, the cost of spiro-OMeTAD is high, and the use of hydrophilic dopants will affect the 

stability of the cells. [19] It is necessity to develop lower cost and undoped hole transporting materials. 

The carbazole derivatives are excellent in charge transporting ability, have multiple reaction sites, 

permit fine tuning of electrical and optical properties, and are low in the price of synthetic raw materials. 

[20-24] Therefore, carbazole derivatives have attracted much attention as hole transporting materials. In 

this work, a novel carbazole-based small molecule hole transporting material is reported. Its 

photophysical properties are measured, a mesoporous perovskite solar cell is fabricated with an 

efficiency of 13.11%, in which the hole transporting material is the synthesized compound EPC. 

2. Results and discussion 

EPC is synthesized by nucleophilic substitution and Wittig reaction (Scheme S1). The molecular 

structure is shown in Fig. 1a. The structure was fully characterized by 1H NMR spectroscopy, 13C NMR 

spectroscopy and MALDI-TOF mass spectrum (Fig. S1-4). 

Fig. 1b shows the normalized ultraviolte-visible (UV-Vis) absorption and photoluminescence (PL) 

spectra of EPC in tetrahydrofuran (THF) solution (c=1×10-5 mol/L). The maximum absorption is at 313 

nm. It is caused by the π-π* transition of electrons in the molecule. [25] In addition, the EPC fluorescence 

emission maximum intensity is at 391 nm. 

 

Fig. 1 (a) The molecular structure of EPC. (b) Normalized UV-Vis absorption and PL spectra of EPC in 

tetrahydrofuran (THF) solution. (c) HOMO distribution of EPC. (d) LUMO distribution of EPC. 

 

In order to study the relationship between molecular structure and material properties and verify 

theoretically that the compound is suitable for perovskite solar cells, we used Gaussian09 calculation 
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software, density functional theory (DFT), B3LYP as the calculation method, and 6-31G(d) as the basis 

set and obtained the optimal configuration of EPC. The results are shown in Fig. 1c-d. Due to the 

presence of the rigid group carbazole, the benzene ring attached to the C=C is not coplanar, showing a 

rotation of 67.02˚, resulting in a large steric hindrance, not easy to form crystals, and conducive to the 

formation of an amorphous solid film. The highest occupied molecular orbital (HOMO) level of EPC is 

-4.82 eV, that mainly distributed on the benzene ring and carbazole at the periphery of the molecule. 

The lowest unoccupied molecular orbital (LUMO) level is -1.15 eV, that mainly distributed on the C=C 

in the center of the molecule and on the adjacent benzene ring, which facilitates carrier transmission.  

Table 1. Photophysical, electrochemical and thermal properties of EPC 

 

λabs 

[nm] 

Eg 

[eV] 

HOMO  

[eV] 

LUMO 

[eV] 

Tg 

[℃] 

Td 

[℃] 

μ 

[cm 2 V -1 s -1] 

EPC 313 
2.05a -4.73a -1.68a 

95.09 423.37 7.23×10-5 
3.19b -5.38b -2.19b 

(a) calculation values (b) experiment values (HOMO level was measured by CV). 

 

Fig. 2 (a) DSC curve. (b) TGA curve. (c) Steady-state PL spectra, excitation at 450 nm. (d) Time-resolved 

PL spectra, decay at 775 nm, excitation at 460 nm. 
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The electrical property of EPC was obtained by cyclic voltammetry (CV), and the energy levels were 

determined by CV and UV-Vis absorption (Fig. S5). The data are summarized in Table 1. The EPC has 

a HOMO energy level of -5.38 eV and a LUMO energy level of -2.19 eV. The HOMO level matches 

the MAPbI3 HOMO level (-5.40 eV), which facilitates hole injection. 

The glass transition temperature and the 5% weight loss temperature were measured by thermal 

gravimetric analysis (TGA) and differential scanning calorimeter (DSC), and the results are shown in 

Fig. 2a-b. The 5% weight loss temperature of EPC is 423.37 °C, and the glass transition temperature is 

95.09 °C, which satisfies the application requirements of hole transporting materials for perovskite solar 

cells. The hole mobility of EPC was measured by space charge limited current method (SCLC). [26] The 

hole only device with the structure of ITO/MoO3 (10 nm)/EPC (60 nm)/MoO3 (10 nm)/Al (100 nm) was 

fabricated and the hole mobility of EPC is 7.23×10-5 cm2 V-1 s-1 (Fig. S6). 

The charge transfer process at the perovskite/EPC interface was investigated by the steady-state and 

time-resolved PL spectra, and the results are shown in Fig. 2c-d. When the EPC is deposited on top of 

the perovskite, the PL intensity is significantly reduced, reaching 28.41% of the perovskite film alone, 

indicating that between the perovskite and the EPC there is an efficient hole extraction process. [27, 28] 

The time-resolved photoluminescence spectra measured excitation wavelength of 460 nm and fitted the 

data through a double exponential decay function. Compared with the perovskite film (13.08 ns) alone, 

EPC can effectively reduce the fluorescence lifetime (1.17 ns). The steady state result is consistent with 

the PL spectrum. 

 

Fig. 3 (a) Current-voltage curve of perovskite solar cell based on EPC with the highest PCE. (b) IPCE 

spectrum and integrated current curve 

 

Mesoporous perovskite solar cells were fabricated based on undoped EPC. The specific structure is 

FTO/TiO2 compact/TiO2 mesoporous/MAPbI3/EPC/Au. The perovskite precursor solution concen-

tration was 1.56 mol/L, the solvent was DMF/DMSO (v: v=9:1), chlorobenzene was used as the anti-

solvent, and the EPC was 20 mg/mL chlorobenzene solution. The current-voltage curve (J-V) of cell 

with the highest PCE under AM 1.5 G (100 mW cm−2) illumination is shown in Fig. 3a. The open-circuit 

voltage (VOC) of the optimal cell is 909.43 mV and the short-circuit current (JSC) is 20.17 mA cm-2, the 

fill factor (FF) is 71.45%, and the photoelectric conversion efficiency (PCE) is 13.11%. In addition, Fig. 
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3b shows the incident photon current-to-electron efficiency (IPCE) spectrum of the cell based on EPC. 

The photocurrent density obtained from the IPCE integration is 19.68 mA cm-2, which is consistent with 

the J-V curve. 

Stability of EPC-based perovskite solar cells were obtained by storing cells without encapsulation in 

a dark state at 25 °C and 60% relative humidity and testing J-V curves at regular intervals. The change 

in PCE over time is shown in Fig. 4a. The test results showed that after 600 hours (25 days) of storage, 

the cell efficiency remained at the initial 82%. According to the previous reports, dopants can cause 

pinholes in the hole transporting layer and can induce decomposition of perovskite crystals. [29-31] In 

addition, the hydrophobic hole transporting layer can act as a barrier to decompose the perovskite of 

H2O. The contact angle of the perovskite/EPC interface with water is 91.23 ̊, which is much larger than 

the contact angle of the perovskite interface with water alone. This is advantageous to block the contact 

between H2O and perovskite in the air and improve the stability of the cells. 

 

Fig. 4 (a) The stability of the cell based on EPC. (b) Contact angle between perovskite/EPC film with water 

in air. 

3. Conclusions 

In this work, a novel type of carbazole-substituted hole transporting material EPC was designed and 

synthesized. EPC has suitable hole mobility, good thermal stability, and energy levels that match 

MAPbI3. The cells were fabricated based on the undoped EPC, the PCE of 13.11% was obtained, and the 

cell maintained its initial efficiency of 82% after 600 hours in a dark state at 25 ℃ and 60% relative 

humidity, showing a good stability. 

4. Experiment Section 

4.1. Synthesis of 3,6-dimethoxy-9H-carbazole 

3,6-dibromo-9H-carbazole (6.0 g, 18.45 mmol), CuI (14.8 g, 77.50 mmol), and 70 mL DMF were 

charged into a three-neck flask. Methanol solution of sodium methoxide (prepared from 8.5 g, 369.5 

mmol sodium and 100 mL methanol) was added under stirring and heated to reflux for 12 h. After the 

reaction system was cooled to room temperature, the solution was poured into 500 mL ice water to 

obtain a brown solid. The filter cake was filtered and washed with deionized water (3×100 mL). The 
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solid was separated by column chromatography (petroleum ether: ethyl acetate=10:1) to give 3.11 g 

white solid with a yield of 81.12%. 1H NMR (400 MHz, DMSO) δ10.80 (s, 1H), 7.79 (dd, J = 102.4, 

2.4 Hz, 2H), 7.33 (d, J = 8.7 Hz, 2H), 7.08–6.85 (m, 2H), 3.86 (d, J = 16.5 Hz, 6H); MS(MALDI-TOF) 

=226.738. 

4.2. Synthesis of bis(4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)methanone 

3,6-dimethoxy-9H-carbazole (2.08 g, 9.16 mmol), t-BuNa (4.00 g, 41.60 mmol) and 40 mL DMF were 

charged into a two-necked flask. After argon protection, the mixture was stirred at 60℃ for 20 min, and 

4,4-difluorophenone (0.95 g, 4.36 mmol) was added, then the temperature was raised to 110 ℃, and the 

reaction was stirred for 12 h. After the reaction system was cooled to room temperature, the solution 

was poured into 400 mL ice water to obtain a yellow solid. The filter cake was filtered and washed with 

deionized water (3×100 mL). The crude product was recrystallized from methanol and dichloromethane 

to give 2.01 g yellow solid with a yield of 72.57%. 1H NMR (400 MHz, CDCl3) δ8.24–8.00 (m, 4H), 

7.76 (d, J = 8.5 Hz, 4H), 7.56 (d, J = 2.5 Hz, 4H), 7.48 (t, J = 7.7 Hz, 4H), 7.08 (dd, J = 8.9, 2.5 Hz, 4H), 

3.97 (s, 12H); MS MALDI-TOF) =632.126. 

4.3. Synthesis of 9,9'-(ethene-1,1-diylbis(4,1-phenylene))bis(3,6-dimethoxy-9H-carbazole) 

CH3P+Ph3Br- (0.84 g, 2.37 mmol) and t-BuOK (0.36 g, 3.16 mmol) were charged into a two-neck flask 

which was placed in ice water, and the mixture was purged with argon. The stirring was started and 50 

mL dry THF was slowly added dropwise through a constant pressure dropping funnel, and the reaction 

was performed for 2 hours. The reaction apparatus was transferred to an oil bath, and bis(4-(3,6-

dimethoxy-9H-carbazol-9-yl)phenyl)methanone (1.00 g, 1.58 mmol) was added to the reaction system, 

and the mixture was heated to 50 ℃ and reacted for 10 hours. After the reaction system was cooled to 

room temperature, the solution was poured into 400 mL ice water to obtain a yellow solid. The filter 

cake was filtered and washed with deionized water (3×100 mL). The solid was then separated by column 

chromatography (petroleum ether: ethyl acetate = 10:1), 0.65 g pale yellow solid with a yield of 65.00% 

was obtained. 1H NMR (400 MHz, DMSO) δ 7.86 (d, J = 1.9 Hz, 4H), 7.76–7.61 (m, 8H), 7.43 (d, J = 

8.9 Hz, 4H), 7.08 (dd, J = 8.9, 1.9 Hz, 4H), 5.75 (s, 2H), 3.91 (s, 12H); 13C NMR (100 MHz, DMSO) δ 

= 56.17, 103.86, 111.07, 115.79, 116.16, 123.92, 126.40, 129,99, 135.65, 137.69, 139.33, 148.17, 

154.32 ppm; MS(MALDI-TOF) =630.155. 

4.4. Characterization 

EPC molecular structure was identified by NMR spectroscopy and MS. We used the INOVA 400 MHz 

spectrometer (Varian, USA) and tetramethylsilane (TMS) as internal standards to obtain NMR spectra. 

MS was performed by using microTOF-QII (Bruker Daltonic, USA). The UV-Vis spectrum of EPC in 

THF solution (c=1×10-5 mol/L) was obtained by using a Thermo Evolution 300 UV-Vis spectrometer 

(Thermo Electron, USA). DSC and TGA were recorded under a N2 atmosphere by using a TA Q20 (TA 

Instruments, USA) thermal analyzer.  

The device was measured for J-V characteristics using 450W Xenon lamp (Oriel) at 100 mW cm-2. 

All devices were measured by masking the active area with a metal mask with an area of 0.09 cm2. The 

IPCE of the device was measured by focusing light from a 300W Xenon lamp (ILC Technology, USA) 

through a Gemini-180 double monochromator (Jobin Yvon Ltd., UK). TRPL and PL spectra were 
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measured by PL spectrometer, Edinburgh Instruments, Fluoroloy3, excited with a picosecond pulsed 

diode laser (EPL-460). 

The CV measurements were performed on fresh dichloromethane solutions with 0.1 mol/L 1-

Bu4NPF6 as the electrolyte by using a three-electrode system. Each solution was bubbled with Ar for 1 

min before measurement. In the three-electrode system, the working electrode and the counter electrodes 

are Pt wires, and an Ag/0.01M AgNO3 electrode (with acetonitrile as the solvent) is the reference 

electrode. The measurements were calibrated using ferrocene as a standard. 

4.5. Device fabrication 

The FTO glass was ultrasonically washed with deionized water, acetone and isopropanol successively. 

A titanium diisopropoxide bis(acetylacetonate) in n-butanol solution having a volume ratio of 1:16 was 

prepared and spin-coated at 2000 rpm for 30 s. The FTO glass was sintered at 500 ℃ for 30 min to 

obtain a TiO2 compact layer. Then, a 30 nm TiO2 ethanol suspension having a mass ratio of 1:6 was 

spin-coated at 5000 rpm for 30 s, and the glass was sintered at 500 ℃ for 30 min to obtain a TiO2 

mesoporous layer. The perovskite precursor solution concentration was 1.56mol/L, wherein the solvent 

was a DMF/DMSO mixed solution (v: v=9:1), and the perovskite spin coating process was 2000 rpm 

for 20 s and then 5000 rpm for 30 s. In the final 15 s of the second spin coating, 100 μL chlorobenzene 

solution was added dropwise, and the obtained perovskite film was annealed at 100 ℃ for 1 hour. Then, 

45 μL chlorobenzene solution of EPC having a concentration of 20 mg/mL was dropwise added to the 

perovskite crystal layer at 4000 rpm and spin-coated for 15 s. Finally, an 80 nm gold electrode was 

deposited on the hole transporting layer by vacuum evaporation. 
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1. synthesis route 

 

 
Scheme S1 Outline of synthesis of EPC. 

2. Structural characteristics  

The structure of synthesized compounds 1 were confirmed via 1H NMR and 13C NMR, which agreed 

well with the proposed molecular structure. 
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Fig. S1 1H NMR of 3,6-dimethoxy-9H-carbazole. 

 

Fig. S2 1H NMR of bis(4-(3,6-dimethoxy-9H-carbazol-9-yl)phenyl)methanone. 
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Fig. S3 1H NMR of EPC. 

 

Fig. S4 13C NMR of EPC 
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3. cyclic voltammetry 

 

Fig. S5 Cyclic voltammetry curve of EPC. 

4. Hole transporting mobility measurement 

 

Fig. S6 J-V curve by SCLC 

 


