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Abstract. An approximate analytical solution to the boundary- value heat conduction problem 

for an infinite bar with a heat source was obtained with the use of the integral method of heat 

balance, by introducing a complementary required function and complementary boundary con-

ditions. The boundary - value problem for a partial differential equation is reduced to an ordi-

nary differential equation with respect to this function due to the complementary required func-

tion that characterizes the change in temperature along the axis of symmetry in the cross-

section of the bar. The complementary boundary conditions determined by the initial differen-

tial equation and the given boundary conditions are found so that their satisfaction is equivalent 

to the solution of the initial equation of the boundary value problem at the boundary points. 

The fulfilment of the equation at the boundary points as well as the heat balance integral results 

in the fulfilment of the initial equation inside the domain. The approximate analytical solution 

obtained can be used to identify the amount of internal heat generated by various production 

processes (vibration and deformation loads, electromagnetic fields effects, etc.) in thermal and 

nuclear power plants, in the rocket and space industry and other industrial facilities. 

1.  Introduction 

Among all approximate analytical solutions for boundary value problems of heat conduction, the inte-

gral heat balance method related to the group of orthogonal weighted residual methods, has been wide-

ly used [1–4]. It helps to obtain approximate analytical solutions for boundary value problems, the ac-

curate solution to which can not be found (nonlinearity of the problem, variable physical properties of 

the medium, etc.) [5–9]. 

However, the main disadvantage of these methods is low accuracy as these methods require solving 

the averaged initial equation (heat balance integral). The application of the complementary desired 

function and complementary boundary conditions provides satisfying the initial differential equation 

with a specified degree of accuracy which depends on the number of approximations of the initial so-

lution. Note that the methods based on the solving the equation at the boundary points have been also 

considered in papers [10–13]. 

2.  Theoretical justification and application of the method 

Consider the use of the integral heat balance method with complementary boundary conditions and a 

complementary required function for solving a stationary 2D heat conduction problem in an infinite 

bar of square cross section with a constant heat source (figure 1) [14–17]. 

http://creativecommons.org/licenses/by/3.0
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Assume that the temperature on the lateral faces of the bar is known and is equal to Тw. It is neces-

sary to determine the temperature distribution in the cross section of the bar. Due to the symmetry of 

the boundary value problem, only a quarter of the cross section can be considered fixing the boundary 

conditions of the first kind along  EF and AF curves, and the conditions of the absence of heat transfer 

along OE and AO curves. The mathematical setting of the problem in this case is as follows (figure 1) 
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where Т - temperature, К; x, y - coordinates, m; ν — power of the internal heat source, W / m
3
; λ — 

thermal conductivity coefficient, W / (mK); Тw - wall temperature, K; δ - half width of the bar face, m. 

Finding a simple type of analytical solutions for 2D boundary-value problems based on the Poisson 

equation (1) is of considerable practical interest because of its wide use when analyzing many physical 

processes (heat conduction, fluid flow, theory of elasticity, thermoelasticity, torsion of prismatic ob-

jects, etc.). 

The difficulty in constructing a solution is caused by the two-dimensionality of the problem and the 

non-homogeneity of the initial differential equation. Exact analytical solutions to such problems with 

complex infinite functional series were obtained only in individual particular cases and, moreover, 

with substantial assumptions (only under boundary conditions of the first kind and with a heat source 

to be constant in space). Note that regardless of the simplified mathematical problem setting (1), (2) 

the method described below provides obtaining solutions with variable heat sources, without regard to 

the type of boundary conditions and the cross section shape (rectangle, square) [18–21]. 

 

 

Figure 1. The computational domain for the cross-section of the 

infinite rectangular bar. 

 

Introduce the following dimensionless variables and parameters: 
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where Θ - dimensionless temperature; ξ, η — dimensionless coordinates; В –dimensionless parameter. 

Taking into account notations introduced, the heat exchange diagram in the problem (1), (2) will be 

(figure 2) 
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Figure 2. Heat exchange di-

agram for the cross section of 

an infinite rectangular bar. 

 

The approximate analytical solution of the stationary 2D heat conduction problem for an infinite 

bar with a heat source is described by the following relations 
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  - dimensionless complex; Θ, ξ, η - dimensionless tempera-

ture and spatial variables, respectively. 

Introduce the additional required function that characterizes the temperature distribution along the 

OA curve (Fig. 2) by 

 

   0,q . (8) 

 

An approximate solution to the problem (3) - (7) may be found in the form 
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where  qb
k
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– coordinate functions 12(  kr , ),1 nk  . 

Relation (7) due to the adopted system of coordinate functions satisfies the boundary conditions 

(6), (7). To obtain a solution to the problem (3) - (7) in the first approximation we substitute (9) (tak-

ing into account only one term of the series with k = 1) to the relation (8) 
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Relation (10) with respect to the required coefficient  qb
1

 offers an algebraic linear equation, solv-

ing which one can find     qqb
1

. By taking into account the value found of the required coefficient 

 qb
1

, the relation (9) is written as 
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We will demand that relation (11) to be fulfilled the averaged equation (3) with respect to the coor-

dinate η (heat balance integral). 
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Substituting (11) into (12), after determining the integrals with respect to the required function q(ξ), 

we obtain the following ordinary differential equation 
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The general integral of the equation (13) is as follows 
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where
1

C , 
2

C  - constants of integration. Substituting (14) into (11) we have 
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The constants of integration
1

C  and 
2

C are found from boundary conditions (4), (5). Substituting 

(15) into (4), (5) with respect to 
1

C and
2

C  we will have a system of two algebraic linear equations, and 

solving them we obtain 
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Taking into account values found 
1

C  and 
2

C  the relation (15) is as follows 
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The solution of the problem (3) - (7) in the first approximation is given by relation (16). It exactly 

satisfies the boundary conditions (4) - (7), the heat balance integral (12) and approximately satisfies 
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the equation (3) (in the first approximation). The standard deviation of the solution (16) compared to 

the exact one [22] according to Gauss form is 0.7%. 

To increase the accuracy of the solution, it is necessary to enlarge the number of terms of series (9). 

To determine the required coefficients it is necessary to apply complementary boundary conditions 

(CBC). These conditions are found in such a form that their fulfillment by the desired solution is 

equivalent to the fulfillment of equation (3) at the borders of OE and OA of the bar section (Fig. 2). To 

obtain the first condition, let us differentiate the boundary condition (6) twice with respect to the vari-

able ξ 
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The relation (17) taking into account equation (3) is reduced to the following CBC along OA curve 
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To obtain the second CBC (for the border set OA), let us differentiate (18) twice with respect to ξ 
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Relation (19) taking into account equation (3) is reduced to CBC in the form 
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Similarly, we can get any arbitrary number of CBCs on the axis of symmetry (along the OA curve). 

The general formula for them will be 
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Note that due to the adopted system of coordinate functions  
k

nk ,1 , all CBCs determined by 

formula (19) by relation (9) are fulfilled. 

To determine the CBC along the axis of symmetry η (along OE curve), we differentiate the bound-

ary condition (5) twice with respect to the variable η 
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Relation (22) taking into account equation (3) is reduced to the following CBC 
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If we differentiate (23) twice with respect to variable η, we can find 
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Relation (24) taking into account equation (3) is reduced to the following CBC 
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The general formula of CBC along OE curve will be 
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To determine the CBC along AF curve, we differentiate the boundary condition (3) twice with re-

spect to the variable η 
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Equation (3) taking into account (27) is reduced to the following CBC 
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If we differentiate (28) twice with respect to the variable η, we find 
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Relation (29) taking into account equation (3) is reduced to the CBC in the form 
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The general formula for all subsequent CBCs along the AF curve will be 

 
 

0
,1

2

2





i

i

 ...4,3,2i  (31) 

 

Let us differentiate relation (28) twice with respect to the variable η 
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Relation (32) taking into account equation (3) is reduced to the following CBC 
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Let us differentiate (33) twice with respect to the variable ξ 
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Relation (34) taking into account equation (3) is reduced to the CBC in the form 
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The general formula for all subsequent CBCs, starting with CBC (35), will be 
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where «+» sign is for even i, and «–» sign is for odd i. 

To obtain a solution to the problem (3) - (7) in the second approximation, substitute (9) (taking into 

account two terms of the series) to relations (8) and (33). With respect to  qb
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we will have a 

system of two algebraic linear equations, solving which we can find 
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Relation (9) taking into account (37) is as follows 
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Substituting (38) into the heat balance integral (12), with respect to the required function q(Fo) we 

will have the following ordinary differential equation 
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The general integral of equation (39) is as follows 
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where С1, С2, С3, С4 - constants of integration determined from the basic (4), (5) and complementary 

(23), (28) boundary conditions, which for the function    0,q
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Relation (33) taking into account (40), (41) offers the solution to the problem (3) - (7) in the second 

approximation. It exactly satisfies the boundary conditions (4) - (7), the heat balance integral (12) and 

approximately (in the second approximation) the equation (3). The results of calculations by the for-

mula (38) are shown in figure 3 

Compared to the exact solution [8], it follows that the standard deviation according to the Gauss 

formula is 1.3%. 

To increase the accuracy of the solution, it is necessary to enlarge the number of terms of the series 

(9). To find the required coefficients  qb
k

, we use the condition (8) and complementary boundary 

conditions obtained by the general formula (36). To find the constants of integration
k

C , ( nk 2 ) the 

initial boundary conditions (2), (3), CBC (21) and CBCs obtained by the general formulas (26) and 

(31) are used. 

It should be noted that the adopted solution method has rather rapid convergence. So, already in the 

second approximation, the maximum ratio error of the solution obtained (Chebyshev norm) compared 

to the exact solution [8] decreases from 33% to 10%.  

Note also that the use of an exact analytical solution (which is an infinite series) is difficult in the 

cases where the solution of the problem (3) - (7) is an intermediate stage of the researches for other 

problems, such as thermoelasticity, inverse boundary value problems, control problems, etc [23-24]. In 

these cases, a solution that contains a limited number of terms of the series and has sufficient accuracy 

for engineering applications will be more effective. 

 

 

Figure 3. Temperature distribution in the bar section in the second 

approximation. 

3.  Conclusions. 

1. Based on the use of a complementary required function and complementary boundary conditions in 

the integral heat balance method, an approximate analytical solution to the stationary two-dimensional 

heat conduction problem for an infinite bar with a uniformly distributed heat source is obtained. The 

use of the complementary required function provided reducing the solution of the partial differential 

equation to the integration of an ordinary differential equation. 

2. To find the required coefficients and the constants of integration we used complementary bound-

ary conditions determined in such a way that their fulfilling by the required solution is equivalent to 

the fulfillment of the initial differential equation at domain borders. It is shown that the fulfillment of 

the equation at the boundary points also leads to its fulfillment within the considered domain, with the 

accuracy depending on the number of approximations. 
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3. The use of the heat balance integral provides applying this method to solving boundary value 

problems for the Poisson equation with space-wise variables by physical properties of the medium and 

internal heat source. 

4. Using the analytical solution (15) found, by solving the inverse heat conduction problem, one 

can fulfill quantitative identification of the internal heat sources generated in solids due to the process-

es of different nature (chemical reactions, heating by electromagnetic fields, vibration loads, defor-

mation, friction, etc.) when included an experimental temperature value at any point in the structure. 
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