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Abstract. It is given the paired data following a nonparametric regression model for longitudinal 

data. The regression curve is approached by the smoothing spline function. The smoothing spline 

is a function that is able to map the data well and has a small error variance. This current study 

aims to obtained from completing PWLS (Penalized Weighted Least Square) optimaziton. 

Besides, the GCV method is used to select the smoothing parameter. 
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1.  Introduction 

A method used in statistics in order to determine the pattern of the relationships between the two 

variables is regression analysis. If the form of the regression curve is known, then the approach uses the 

parametric regression model [1]. However, in real life, there is a pattern of relationships that are 

unknown is shape. The appropriate approach for the data pattern that is not known/unknown in the form 

of regression curve is nonparametric regression [2]. The nonparametric regression has the ability to find 

a form of a regression curve pattern that is not known yet. This ability is supported by the existence of 

parameters in each type of nonparametric regression method which estimates the regression curve to be 

more flexible. Therefore, the data is expected to find its own regression curve estimation form without 

being influenced by subjectivity of researcher [3]. Some of the models used by researchers are the kernel, 

spline, Fourier series and wavelet. 

Spline has a very good ability in handling the data shoes behavior changes at sub-specified intervals 

[3]. The approach to estimating spline functions in nonparametric regression models is basically divided 

into two forms, namely penalized spline [4] and smoothing spline [5]. The uses of the regression form 

on the penalized spline approach requires accuracy in determining the number of knots and location of 

knots and location of knots, whereas smoothing spline is not required for the selection of knots, because 

the estimation of functions is based on the criteria of model accuracy and the size of smoothness of the 

curve set by smoothing parameters. This shows that the smoothing spline approach has better flexibility 

than the penalized spline approach. 

The study on smoothing spline estimators actually has been carried out [6]. However, the estimators 

has several weaknesses in which the estimator is only able to handle cross-section data and is not able 

to handle longitudinal data so that it cannot be used to obtain a model for each subject. A type of data 

used in regression analysis is longitudinal data. The longitudinal data is a combination of cross section 

data and time series. In relation to the description above, this study will develop a smoothing spline 

estimator in nonparametric regression for longitudinal data. This model is expected to be able to deal 

with the weaknesses of previous research. This study will solve several objectives, namely, to obtain the 
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form of smoothing spline estimator and to select the smoothing parameter selection in order to estimate 

the nonparametric regression curve in the longitudinal data.    

 

2.  Theoretical Framework 

2.1.  Longitudinal Data 

On the other hand, the longitudinal data is also called as repeated measurement data, which means that 

the observations carried out on N  subjects that are mutually independent with each subject being 

observed directly in a period of time. In longitudinal data, the observation in the same subject is 

dependent or correlated [7]. The longitudinal data has different characteristics when it is compared to 

time series data and cross section data. Moreover, in longitudinal data, the number of time series is 

relatively short because it allows only two or three different measurement times for each subject [8]. 

Besides, the observation between each subject are assumed to be independent of each other, but 

observation in the same subject are dependent [6].  

2.2.  Reproducing Kernel Hilbert Space (RKHS) 

The reproducing kernel from a Hilbert H space is a R  function defining on [ ] [ ], ,a b a b´  so that for 

each particular point [ ],x a bÎ , applies for xR Î H , by formulated 

( ) ( ),x s t sR x R x x=  and ( ) , ,
txf t R f f= Î H           (1) 

RKHS is a Hilbert space of real value functions on [ ],a b  with the properties for each [ ],x a bÎ , 

functional ( )x f f xL  which is a limited linear functional, meaning that are real numbers such the 

following 

( )x f f x fd= £L              (2) 

The reproducing kernel from H  is a R  function defining on [ ] [ ], ,a b a b´  so that for each point 

remains [ ],x a bÎ  which can be formulated: 

xR Î H , ( ) ( ),x s s tR x R x x=  and , ( ),x xf R f f x f  L H        (3) 

If H  of an RKHS, then it can be decomposed into 0 1= ÅH H H  with 0 1

^=H H  and 0 1,H H  

for each sub-space in H [6].   

2.3.  Nonparametric Spline Regression for Longitudinal Data 

The nonparametric regression approach assuming the pattern of relations between response variables 

and predictors can be described in a particular function. However, in the application obtaining that 

function is precisely very difficult. The approach that should be used in this condition is a nonparametric 

regression approach [2]. It states the relationship between an one predictor with an one response for 

longitudinal data involving N subjects on the T  observation of each subject, following the regression 

model: 

  ( ) ; 1,2,..., ; t 1,2,...,Tit i it ity f x i Ne= + = =            (4) 

ity  is the response to the -i subject and the -t time observation, 
itx is the -i subject predictor and the -t

time observation, 
if  is the regression curve for predictor relationship with the responses to -i subject, 

N  is the number of subjects, T  is the number of observation on each subject, moreover, 
ite  is the 

random error on -i subject and -t time observation. 
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In the nonparametric regression model for the longitudinal data, random error ( )11 12, ,..., ,NTe e e e=
%

 

is assumed to be normally distributed -NT variat with the mean ( ) 0eE =
%

(vector sized NT ) and the 

matrix of variance-covariance ( )Var e = S
%

 (matrix sized NT NT´ ) as follow: 

1

2

( ) ( )

0 0

0 0

0 0 N NT NT

 
 


  
 
 

 

           (5) 

The matrix form S  can be simplified into a sub-matrix can be presented as follows: 
2 2 2 1 2

11 11 11 11

2 2 2 2 2

11 12 11 11

2 2 2 2 3 2
11 11 11 13 11

1 2 2 2 3 2 2

11 11 11 1

2 T

T

T

T T T

T T T

     

    

     

      







  



 
 
 
  
 
 
 
   

The homogeny assumption ( )2 2 2 2 2

11 12 13 1... Ts s s s s= = = = , the structure of the covariance matrix is 

denoted by Autoregressive (AR) structure which has two parameters to define all variances and co-

variances, namely the variant parameter 
2s and correlation parameter .r  

The coefficient autocorrelation of -i subject on the -v time lag is symbolized
( )i vyr  which is presented 

as follows [10].   

( )

( )

1

2

1

( )( )

( )
i v

T v

it i i t v i

t
y T

it i

t

y y y y

r

y y









 









  

The description of v  is the index of time lag 
2 2 2 2 1 2

2 2 2 2 2

2 2 2 2 3 2

1 2 2 2 3 2 2

, 1, 2,...

T

i i i i

T

i i i i

T
ii i i i i

T T T

i i i i T T

i N

     

    

     

      







  



 
 
 
   
 
 
 
 

  

In the structure of AR (1), residual variance 
2s is constantly assumed and the co-variance residual is 

assumed 
2 2 2,  etcs r s r [7]. The sub-matrix element S   is the diagonal matrix value of observed 

variance in the response, and between observation in the response which are mutually independent, 

marked with a non-diagonal element in the matrix value of 0 [8].  

2.4.  The Optimization Completion of Penalized Weighted Least Square (PWLS) 

The estimation curve completion 
if  of the longitudinal data for the formula (4) uses penalized weighted 

least square (PWLS) which involves the weights in the form of the inverse covariance matrix random 

error symbolized .S  To obtain an estimate of the regression curve 
if , it uses PWLS which means that 

the optimization completion as follows [9]: 

1 T 1 ( ) 2

1

Min ( ) ( ) ( ( ))
i

i

bN
m

i i it it

i a

M y f y f f x dx 



  
    

  
          (6) 
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with ( )11 12, , ,...,
T

NTm NT y y y y= =
%

 and ( ) ( ) ( )( )1 11 2 12, ,...,
T

N NTf f x f x f x=
%

  

the optimization of PWLS on the formula (6) is also considering the use of smoothing parameter 
il  as 

the controller between the goodness of fit and roughness penalty. The optimization reducing of PWLS 

above becomes goodness of fit ( )R f and roughness penalty ( )j f  [12]: 

 
1 T 1( ) ( ) ( )R f M y f y f                (7) 

( ) 2

1

( ) ( ( ))

ji

ji

b
N

m

ji ji jit jit

i a

J f f x dx


                  (8) 

2.5.  The Smoothing Parameter in the Nonparametric Regression 

In order to obtain the optimal spline estimator and smoothness of the curve, it is very dependent on the 

selection of refining parameters .l  Choosing the smoothing parameter l  optimal in nonparametric 

spline regression in longitudinal data is based on the generalized cross validation (GCV) method. The 

optimal parameter estimation is obtained by minimizing the GCV function so that the regression curve 

estimation obtained. The choice of optimal l  by the GCV method is defined as follows with M NT=  

[3]. After getting the optimal parameter estimation by minimizing the GCV function, the regression 

curve estimation will be obtained.    

3.  Research Methodology 

The step conducted in the research related to obtaining the estimation of smoothing spline for the 

longitudinal data are illustrated as follows: 

1) The paired data are given( ),it itx y .  

2) The regression of the nonparametric model for longitudinal data is provided. 

3) Approaching ( )i itf x  by having smoothing spline degree m  with the smoothing coefficient 
il   

4) Deciding the random error 
ite

%
 normal distributed -variatM  with ( )( ), 0M NT e= E =

%
 and 

( ) 0Var e =
%

. 

5) Obtaining the form of the regression function f  and determining the matrix design of T  and 

V  by having RKHS approach. 

6) To estimate the regression function f̂  by minimizing PWLS. 

7) To estimate the variance-covariance matrix S  thus, it is obtained the matrix estimation of Ŝ         

8) Accomplishing to choose the optimal smoothing parameter. 

4.  Result and Discussion 

4.1.  The Estimator Spline to Estimate Nonparametric Regression Curves in Longitudinal Data 

If the paired data are given ( ), ; 1,2,..., ; 1,2,...,it itx y i N t T= = following the model nonparametric 

regression for longitudinal data as given in the formula [9] as follows: 

( ) ; 1,2,..., ; t 1,2,...,Tit i it ity f x i Ne= + = =           (9) 

Then, the form of nonparametric function for longitudinal data is described as:  

f d cΤ V   

Proof: 

Suppose that in the formula [9], it is rewritten as 
it i itxy f e= +L  
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The function T

1 11 2 12( ( ), ( ),..., ( ))N NTf f x f x f x is unknown regression curve and assumed to be smooth 

in the sense contained in the H  space. Then H is decomposed to be 

0 1= ÅH H H  with 0 1

^=H H  

For example, basis 0H and 1H  for each is follows: 

Basis { }0 1 2, ,...,i i imf f f=H with m  is the order of polynomial spline 

Basis { }1 1 2, ,...,i i iTx x x=H  and T  the number of the time of the observation 

Then the function of if Î H  to be
i i if g h= + , having the function 0ig Î H and 1ih Î H  for each is 

as follows: 

T

1

m

i ij ij i i

j

g d d


     and 
T

1

T

i it it i i

t

h c c


    in which ijd  & 
itc  it is constant. 

Therefore, 
T T

i i i i i i if g h d cf x= + = +
% %% %

         (10) 

By describing
xL linear functional limited to H  space and the function of if Î H and ith Î H, a, then 

the formula (10) can be presented as follows: 

( ), ,i it i t ix i if f f x fh= = Î HL           (11) 

Based on the formula (10) and (11), then ( )i itf x it can be described as:     

T T T T, , , ,i it i it i i i i it i i it i ix f f d c d ch h f x h f h x= = + = +
% % % %% % % %

L       (12) 

Next, the formula (9), for 1, 1i t= =  then it is obtained: 

 1 11 11 1 1 11 1 1, ,T Tf x d c      11 11 11 1211 1 12 11 11, , ... , Td d c          

11 12 11 11 11 12 11 1, , ... ,TT Td d c         

If the process is conducted in a similar way, for t T= , then it is obtained: 

 1 1 1 1 1 1 1 1, ,T T

T T Nf x d c      

as a result, the vector from the function of 
1f  in the form of: 

 

 

 

11 11 11 1 11 11 11 1

12 11 12

11 1 11 11 11

11 1 11 11 1 1 12 11 12 1

11 1 1 1 11

2

1

1 1 11 1 1 11 1 1

, ... , , ... ,( )

, ... , , ... ,( )

( ) , ... , , ... ,

m T

m T

i T m T

m T

m T

T T m T TT

d d c cf x

d d c cf x
f

f x d d c c

   
 

     
 
  

  

  

   

     

     

     

 

 

 








 

11 11 11 12 11 1 11 11 11 12 111 11

12 12

1

1 1

12 11 12 12 12 1 12 11 12 12 12 1

11 1 12 1 1 1 11 1 12 1 11

, , , , , ,

, , , , , ,

, , , , , ,

m T

m T

T T m T T TT m T

d c

d c

d c

    
    
     
    
       

    

        

        

    

  

  

     
1T

 
 
 
 
 
 

1 1 1 1 1f d cT V              (13) 

because and its data is the longitudinal data, then based on formula [8] then the -t observation is affected 

by the observation of ( ) ( )1 , 2 ,etct t- - . Therefore, the 
1V  matrix in the form of triangle matrix is 

presented as follows: 
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11 1

12 11 12 12

1

1 11 1 12 1 1

, 0 0

, , 0

, , ,

i

T T T T T T

V



 
 
 
 
 
  

 

   

     

 

with the description 
1T  is a sized matrix T m´ , 

1d
%

 and is a vector sized m , 
1V  and is sized matrix 

1,T T c´
%

and is vector sized T  

Moreover, by taking the similar way for 1,2,...,i N=  is describe as follows: 

 

 

 

 

1 1 1 11 11 11

2 1 2 12 11 12

1

1 11

1 2 1 1

1 1 1 11 1

, ... , , ... ,( )

( ) , ... , , ... ,

( ) , ... , , ... ,

i i i im ii im i iTi i

i i im i iT

T

i i i im iT

iT

i

i iT i ii iT imm i iT T iTT

d d c cf x

f x d d c c
f

f x d d c c

     



 

    

    



 

   
 

     
 
  

  



 

 

 








  

i i i i if d cT V              (14) 

iT  is sized matrix , iT m d´
%

 is sized matrix T T´  and 
ic

%
 is sized vector T .   

Therefore, the estimator spline form of f
%

 can be illustrated as follows: 

1 1 1 1

2 2 2 2
 

N N N N

d c

d c
f

d c

 
 

  
 
 

 

T V

T V

T V

1 1 1 1

2 2 2 2

0 0 0 0

0 0 0 0

0 0 0 0N N N N

d c

d c

d c

       
      
      
      
      

       

T V

T V

T V

 

f d cΤ V                             (15) 

 Proven 

Furthermore, to obtain the estimation of the regression curve f  by using penalized weighted least 

square optimization, it is presented as follows:  

1 T 1 ( ) 2

1

Min ( ) ( ) ( ( ))
i

i

bN
m

i i it it

i a

M y f y f f x dx 



  
    

  
   

Assumption ( ) 0 and Var( )     , then  

f̂ yA   

With the description    
-1 -1

T -1 -1 T -1 -1 -1 -1 T -1 -1 T -1 -1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆy y
   
  

A T T U Σ T T U Σ VU Σ I T T U Σ T T U Σ  

   
-1ˆ ˆ U Σ V MA  

Proof: 

Because the formula (15) function is f d cΤ V  , then the nonparametric regression model for 

longitudinal data in formula (6) can be described as : 

y f d c     T V  

Then it is used ℋ = 𝐖2
𝑚[𝑎𝑖, 𝑏𝑖] which means Sobolev space of order-2 defined as follows: 

 𝐖2
𝑚[𝑎𝑖, 𝑏𝑖] = 

2
( ): ( )

i

i

b

m

i i it it

a

f f x dx
  

     
  
  with  dan 1,2..., .i it ia x b i N    based on that space 
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By having the RKHS approach, so that it is obtained the estimation of f  that fulfill the optimization of 

PWLS: 

    1 1
2 2

2 2

min min (y f
 

     with the obstacles 
2

( ) ( )
i

i

b

m

i it it

a

f x dx          (16) 

Then it is used ℋ = 𝐖2
𝑚[𝑎𝑖, 𝑏𝑖] which means Sobolev space of order-2 defined as follows: 

 𝐖2
𝑚[𝑎𝑖, 𝑏𝑖] = 

2
( ): ( )

i

i

b

m

i i it it

a

f f x dx
  

     
  
  with  dan 1,2..., .i it ia x b i N    based on that space, it is  

The optimization of the weighted with constraints on the formula (16) is equivalent to completing 

optimization of PWLS: 

 
1 T 1 ( ) 2

1

Min ( ) ( ) ( ( ))
i

i

bN
m

i i it it

i a

M y f y f f x dx 



  
    

  
        (17) 

Both 𝑀 = 2𝑁𝑇 and 𝜆𝑖 are the smoothing parameter that controls between goodness of fit,

1 T 1( ) ( )M y f y f    and penalty, ( ) 2

1

( ( ))
i

i

bN
m

i i it it

i a

f x dx


   

Then, it does the decomposition of the penalty component first as follows: 
1

1

2 2( )

1 11 11 1 1 1 1 1 1( ( )) ,

b

m

a

f x dx P f P f P f      

where 𝑃1 is an orthogonal projection 𝑓1 ke ℋ1 in 𝐖2
𝑚[𝑎𝑖, 𝑏𝑖]. 

         
1

1

T2
( ) T T T T T T T T T T

1 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1( ( )) , ,

b

m

a

f x dx P d c P d c c c c c c c                 

        11 1 1

Tc c V   

as a result,
1

1

2
( )

1 11 11 1 1 1 1( ( ))

b

m T

a

f x dx c c    V . In a similar way, it is generally obtained:  

2
( )( ( ))

i

i

b

m T

i it it i i i i

a

f x dx c c    V , therefore, it is obtained the penalty value: 

( ) 2

1 1 1 1 2 2 2 1

1

( ( )) ...
i

i

bN
m T T T

i i it it N N N N

i a

f x dx c c c c c c   


     V V V

 

1 1 1 1

2 2 2 2T T T T

1 2

0 0 0

0 0 0
,   

0 0

N N N

N N N

N

N N N N N N N

c

c
c c c c c

c

 

 

 

    
    
      
    
    
    

V I 0 0

V 0 I 0
ΛV Λ

V 0 0 I

  

Based on the result of the formula (12), then it is obtained goodness of fit on the optimization of PWLS 

of the formula (15) that can be drawn as follows: 

       
T T

1 -1 1 -1M y f y f M y d c y d c       Σ T V Σ T V  

The completing optimization of PWLS both goodness of fit and penalty are presented as follows: 
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       1 -1 T
T 2

1 -1 ( )

1

( T V ) Σ ( T V ) ΛVmin Σ ( ) min T

i

i

bN
m

i i it it

i a

M y d c y d c c cM y f y f f x dx 



     
  

   
  

 

  1T T T T T T T T T T T T T
min 2 2 My y d y c y d d d c c d c M c-1 -1 -1 -1 -1 -1 -1

Σ T Σ V Σ T Σ T T Σ V V Σ T V Σ V ΛV


        
 

  min Q ,c d               (18) 

The completing optimization on the formula (16) is obtained through the partial derivatives  Q ,c d

successively against c and d , then it is equated with 0. The following is a partial derivative: 

 Q ,
0

c d

c





, then it is obtained: 

1 1 1
ˆ 0y d M cΣ Σ T Σ V ΛI

  
          

For example, it is given a matrix M
-1

U = Σ V Λ  

Then, it can be re-written:  1 1ĉ y d  U Σ T         (19) 

Then, the partial derivative  Q ,
0

c d

d





is obtained: 

 T 1 T 1 T 1 1 1ˆ ˆ 0y d y d          T Σ T Σ T T Σ VU Σ T         (20) 

Because M
-1

U = Σ V Λ , then  M V Σ U ΛI it will be obtained as follows: 

   1 1 1
M M

  
   VU Σ U ΛI U Σ I ΛU  

1 1 1
M

  
 Σ VU I ΛU            (21) 

The formula (21) is substituted into the formula (20), so that it is obtained: 

 T 1 T 1 T 1 1ˆ ˆ 0y d M y d          T Σ T Σ T T I ΛU Σ T  

If the formulation above is described, then: 
T 1 1 T 1 1 0M y M d     ΛT U Σ ΛT U Σ T  

 
1

T 1 1 T 1 1d̂ y


    T U Σ T T U Σ         (22) 

The formula (22) is substituted into the formula (19), and then it is obtained:  

 
1

1 1 T 1 1 T 1 1ĉ y


       
  

U Σ I T T U Σ T T U Σ         (23) 

Based on the formula (22) and (23), it is obtained the estimator for longitudinal data of nonparametric 

regression curves as follows: 
ˆ ˆ ˆf d c T V         (24) 

    1 1
T 1 1 T 1 1 1 1 T 1 1 T 1 1f̂ y y

 
          

  
  T T U Σ T T U Σ VU Σ I T T U Σ T T U Σ

T T T T1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ   
-1 -1 -1 -1 -1 -1 -1 -1 -1 -1

λ
A = T(T U Σ T) T U Σ +VU Σ I -T(T U Σ T) T U Σ  

f̂ y A
                 (25)

 

 Proven 

4.2.  Matrix Estimation of Error Variance-Covariance 

By using Maximum Likelihood Estimator (MLE) method, 𝜀𝑖𝑡 the random error is obtained from the 

results of the estimation on i-subject of 𝑡-observation is is assumed by distributed 𝑁𝑇-variat and the 

mean ( ) 0E    (vector sized𝑁𝑇) and variance-covariance matrix Var( ) 0  (matrix sized 𝑁𝑇 × 𝑁𝑇) 

as follows : 
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11

22

ˆ 0 0

ˆ0 0ˆ

ˆ0 0 NN NT NT

 
 

 
   

 
    

To obtain the estimation ˆ ii ; 𝑖 = 1,2, … , 𝑁 with  1 2, ,...,i ny y y y  then, the function likelihood 𝑦𝑖 as 

follows:  

   1 T

1

TT T 1
, | ln(2 ) ln tr ( )( )

2 2 2

T

i i i ii it it it it

t

L f y y f y fΣ




 
       

 
  

for example

T

1

( )( )
T

it it it it

t
ii

y f y f

T



 




W ,Then 1ln ( , ) ln(2 ) ln tr
2 2 2

i ii i ii ii ii

TT T T
L f y           

Σ Σ Σ W the 

estimator for variance-covariance matrix ˆ iiΣ  is obtained by maximizing the function ln ( , )i ii iL f y 
 

Σ  

by formulating 
ln ( , )

.
i ii i

ii

L f y 
  



Σ
0

Σ
 

1

1 1 1 1

ln(2 ) ln trln ( , ) 2 2 2

2 2

ii ii ii
i ii i

ii ii i ii ii ii

ii ii

TT T T
L f y T T

 

   

 
        

   
   

 

Σ Σ WΣ
Σ Σ Σ Σ W Σ

Σ Σ

1 1( ) 0
2

ii ii ii ii

T     Σ Σ W Σ  So that ˆ  ii iiΣ W  

Therefore, the estimator of variance-covariance matrix error ˆ iiΣ  for nonparametric regression models 

for single predictors and single responses to longitudinal data which is presented as follows: 
Tˆ ˆ( )( )

ˆ ; 1,2,...,
i i i i

ii

y f y f
i N

T

 
 Σ  

4.3.  Choosing the Optimal Smoothing Parameters Methods  

The method of selecting the optimal smoothing parameters in the weighted spline estimator in 

nonparametric regression on single predictors and single responses for longitudinal data uses the 

Generalized Cross Validation (GCV) method. It is known in the formula (23) weighted spline estimator 

as follows f̂ y A , so that goodness of fit from spline estimator is described as follows: 

   
1 1

TT1 T 1 1 T 1 1 T 1 12 2ˆ ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )R f M y f y f M y y y y M y yA A I A I A
      

  
                          
  

   

Therefore, GCV is defined as follows:  

   

  

T1 T

2
1

M y y
GCV

M trace

 








I - A I - A

I - A

 

5.  Conclusion 

In relation to the results and the discussion above, it can be concluded that the nonparametric regression 

model involving a single predictor and a single response is defined as (𝑥𝑖𝑡𝑦𝑖𝑡)  which means that the 

formula of the longitudinal data is 𝑦𝑖𝑡 = 𝑓𝑖(𝑥𝑖𝑡) + 𝜀𝑖𝑡 that has the function  

 f d c Τ V . 
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Moreover, the spline estimator satisfying the minimum criteria of PWLS which is presented as follows: 

 1 T 1 ( ) 2

1

Min ( ) ( ) ( ( ))
i

i

bN
m

i i it it

i a

M y f y f f x dx 



  
    

  
  is ˆ ˆ ˆf d c y  T V A , 

The estimation of the matrix of the variance covariance random error is presented as follows: 
Tˆ ˆ( )( )

ˆ , 1,2,...,
i i i i

ii ii

y f y f
i N

T

 
  Σ W . 

The smoothing parameter is presented as follows: 

    

  

T1 T

2
1

M y y
GCV

M trace

 








I - A I - A

I - A

 

References 

[1]  Hardle, W. (1990). Applied Nonparametric Regression. New York : Cambridge University Press. 

[2]  Budiantara, I.N. (2001) . Estimasi Parametrik dan Non parametrik untuk Pendekatan Kurva Regresi 

Makalah Pembicara Utama Pada Seminar Nasional Statistika V, Jurusan Statistika, FMIPA, 

Institut Teknologi Sepuluh November (ITS), Surabaya.  

[3]  Eubank, R.L. (1988), Spline Smoothing and Nonparametric Regression, New York: Marcel Deker. 

[4]  Heckman, N., Lockhart R., and Nielsen J.D. (2009). Penalized Regression, Mixed Effects Models 

and Appropriate Modelling. Retrieved, December, 12, 2012. Website: 

http://www.stat.ubc.ca/~nancy/pubs/lmetechreport.pdf.  
[5]  Budiantara, I.N., Lestari, B., dan Islamiyati, A. (2009). Estimator Spline Terbobot Spline Parsial 

Terbobot dalam Regresi Nonparametrik dan Semi parametrik Heteroskedastik untuk Data 

Longitudinal. Laporan Akhir Program Hibah Kompetensi Tahun 1. Lembaga Penelitian dan 

Pengabdian Kepada Masyarakat. Institut Teknologi Sepuluh Nopember. Surabaya. 

[6] Wu, H., and Zhang, J.T. (2006). Nonparametric Regression Methods for Longitudinal Data Analysis. 

New Jersey: John Wiley and Sons, Inc.  

[7]  Diggle, P.J., Liang, Y.K. and Zeger, S.L., (2006), Analysis of Longitudinal Data. Second Edition. 

New York: Oxford. 

[8]  Verbekke, G., and Molenberghs, G. (2000). Linear Mixed Model for Longitudinal Data. Springer 

Series in statistics. New York: Springer Verlag. 

[9] Fernandes, A.A.R. (2016). Estimator Spline dalam Regresi Nonparametrik Birespon Untuk Data 

Longitudinal (Studi Kasus Pada Pasien Penderita TB Paru Malang). Institut Teknologi 

Sepuluh Nopember. Surabaya. 

[10]  Gujarati, D. (2004). Ekonometrika Dasar. Terjemahan : Zain, S. Jakarta : Erlangga.   

[11]  Weiss, R.E. (2005). Modelling Longitudinal Data. Springer Texts in Statistic New York. Retrieved, 

January, 31, 2012. Website: http://www.biostat.ucla. edu/books/mld.  

[12]  Lestari, B., Budiantara, I.N., Sunaryo, S., & Mashuri, M. (2012). Spline Smoothing for Multi-

response Nonparametric Regresiion Model in Case of heteroscedascity of Variance. Journal 

of Mathematics and Statistics, 8(3), 377-384. 

 

 


