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Abstract. Regression analysis is one method in statistics that is used to determine the pattern of 

functional relationships between response variables with predictor variables. Semiparametric 

regression approach is a combination of parametric regression and nonparametric regression. 

The most popular estimator for nonparametric regression or semiparametric regression is spline 

truncated estimator. Spline is the estimation method that is most often used because it has 

excellent statistical interpretation and visual interpretation compared to other methods. 

Regression modelling using longitudinal data is often found in everyday life, where observations 

are carried out for each subject over a period of time. Interval estimation is often examined by 

nonparametric regression and semiparametric regression; this estimation aims to determine 

predictor variables that have a significant influence on the response variable. One indicator used 

in poverty analysis is the poverty line. Based on Indonesia's macro poverty analysis calculations, 

in the period March 2016 to March 2017, the poverty line increased by 5.67 percent, with 

increases in urban and rural areas at 5.79 percent and 5.19 percent respectively. Modelling using 

semiparametric spline truncated regression for longitudinal data on data on the percentage of 

poor people in Indonesia produces the best model using W1 weighting and one point knot. Based 

on the results of the study with a significance level of 0.05, it was found that the percentage of 

poor people was influenced by the human development index (HDI) and the unemployment rate. 

This semiparametric regression model has a minimum GCV value of 1.677, MSE of 5.477 × 10-

2 and R2 value of 98.67%. 

 

1.  Introduction 

Regression analysis is one method in statistics that is used to determine the pattern of the relationship 

between the response variable and the predictor variable described in a function called the regression 

curve [1]. There are three approaches to estimating the regression curve, namely the parametric 

regression approach, nonparametric regression and semiparametric regression. The parametric approach 

is carried out if the functional form between the response variable and predictor variable is assumed to 

have a certain form such as linear, quadratic, exponential and so on, while the nonparametric approach 

does not assume a particular form of regression function so that the regression function is estimated 

using smoothing techniques. Therefore, it is expected that the data searches for its own estimation form 

without being influenced by the researchers' subjectivity factor [2]. Meanwhile, if the regression curve 

consists of parametric and nonparametric components, the appropriate regression approach used is 

semiparametric regression. The method often used to estimate the regression curves in nonparametric 

regression and semiparametric regression, namely spline, because this method has excellent statistical 

interpretation and visual interpretation compared to other methods. Special bases that are often used in 

research use spline estimations, namely truncated bases. Spline truncated is one type of polynomial 

piecewise which is a polynomial that is segmented or fragmented. The segmented polynomial model 
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causes spline truncated to have more flexibility than ordinary polynomial models, so it is more effective 

to explain the local characteristics of the data function [3]. 

 Longitudinal data is a combination of cross section data and time series data where in longitudinal 

data between subjects are mutually independent of each other, but between observations in the subject 

are interdependent so there is a correlation between observations [4]. The advantage of longitudinal data 

is that it can know changes in individuals, does not require many subjects, and also estimates more 

efficiently because it is carried out every observation. The spline estimator approach for longitudinal 

data can accommodate correlations between observations in the same subject, which are not found in 

cross section data, so the problem of assuming autocorrelation can be solved [5]. 

 Inference statistics are methods in statistics that are considered important, where statistical inference 

is divided into two, namely parameter estimation and hypothesis testing. In parameter estimation 

research, interval estimation is often discussed with nonparametric regression and semiparametric 

regression approaches. This estimation aims to find out predictor variables that have a significant effect 

on the response variable. There are several studies on interval estimation such as those carried out by 

[6], [7], [8] and [9], but studies examining the estimated interval parameters of a semiparametric 

regression model with a spline truncated approach for longitudinal data have not been done, therefore 

researchers are interested in studying this. The application of interval parameter estimates of the 

semiparametric spline truncated regression model for longitudinal data will be applied to the percentage 

data of the poor in Indonesia in 2011-2017. In this study, it is expected that the pattern of the relationship 

between the percentage of the population below the poverty line and the factors that are thought to 

significantly influence it is known. 

2.  Theoretical Review 

In this section we will review some of the theories used. 

2.1  Semiparametric Regression 

This semiparametric regression model is more flexible than the linear model because of the presence of 

parametric and nonparametric components, this will accommodate the relationship between the response 

variable and the predictors that are linear and nonlinear in nature [10]. Suppose that data is given as 

follows  , , yi ix z , the relationship between  ,i ix z  is assumed to follow the following semiparametric 

regression model: 

   i i i iy f x g z     (1()   (1) 

with iy  is the response variable in the thi observation,  if x  is a parametric component, while  ig z  

is a nonparametric component and i  is a random error with a normal distribution with zero mean and 

variant 
2 . Explicitly, the semiparametric regression model in equation (1) can be expressed in the 

form of a matrix: 

11 1 1 1

22 2 2 2

( )

( )

( )pn n n n

y x g z

y x g z

y x g z

 

 

 

        
        
          
        
         

        

 
 

(2) 

with the equation as follows,  

 iy = Xβ+g z +ε   (3)      (3) 
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2.2  Semiparametric Spline Truncated Regression for Longitudinal Data 

Some popular semiparametric models are spline, kernel, local polynomial, Fourier series, wavelets, 

MARS (Multivariate Adaptive Regression Spline) etc. [11] with the model that is most often used 

because of its spline flexibility. Suppose given paired data  , , 1,2,...,i ix z i n . The relationship 

between the response variable and the predictor variable ,i ix z  follows the regression model so that the 

equation is obtained: 

 ,i i i iy h x z     (4) 

where, h  is a regression curve and i  is a random error with normal distribution with zero mean and 

variance 
2. The regression model is assumed to be an additive, so the regression curve h can be 

decomposed into: 

     ,i i i ih x z f x g z    (5) 

if the regression curve  f  is assumed to be a parametric component or becomes a linear function such as 

the parametric regression equation, while the function g is assumed to be a nonparametric component 

which is approached with a spline  truncated function with degrees m and points of knots 1 2, ,..., rK K K , 

so the g function can be called a regression model nonparametric spline truncated. 

In semiparametric regression with longitudinal data, it is generally performed on n mutually 

independent objects, where each object is observed repeatedly (repeated measurement). In general, the 

model of semiparametric spline truncated regression with degrees 1 (m = 1) for longitudinal data can be 

written with the following equation: 

 
1

(1 )

1

r

il i il i il u i il ui il

u

y x z z K    


       (6) 

where 1,2,...,i n  is the subject of observation as many as n and 1,2,...,l t  is a repetition of 

observations made until the t-period. In equation (6), ik ilz  is a polynomial component with the truncated 

function as follows: 

 
 

1

1 ,

0 ,

il ui il ui

il ui

il ui

z K z K
z K

z K


  
  


 

equation (6) can be written in the form of a matrix as follows, 

y = Db +ε   (7) 

based on equation (7), the estimator b can be obtained with Weighted Least Square (WLS) optimization 

as follows: 

 
    

(1 r)
min
n p q

b R
 



T
y - Db W y - Db   (8) 

response y is a vector of size 1nt  ,  D = X Z  is a matrix of size  1nt n p q r       which is a matrix 

that contains predictors of parametric components and nonparametric components. Vector parameter b 

has size  1 1n p q r      consisting of parameter vectors β  and parameters γ , while ε  is an error 

vector with size 1nt  . Weighting matrix (W)  which is a covariance-sized variant matrix nt nt . 

2.3  Weighted Least Square (WLS) 

In the application using longitudinal data in the regression model both parametric regression and 

nonparametric regression, there are two fundamental assumptions. The first assumption is that the 

variance of the random error in the model is assumed to be homogeneous for each repeated measurement 

in the subject and the second assumption is that the random variance-covariance error matrix in the 
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model is assumed to be known [12]. Based on this, the most appropriate estimation method used is the 

Weighted Least Square (WLS) method. The WLS method estimates parameters by minimizing the 

number of squares between observations and a model called the sum of squared errors. In general, in the 

WLS method the function that is minimized to estimate parameters is formulated as follows: 

   Q 
T

y - Dβ W y -Dβ    (9) 

by minimizing the number of squared errors in equation (9), the results will be obtained: 

 ˆ -1
T T

β = D WD D W y  (10) 

The result of equation (10) is used to estimate the semiparametric spline truncated regression parameter 

with the W matrix which is a diagonal matrix containing weighting for parameter estimation. 

2
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0 0 n

 
 
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 
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 

1W

W
W

W

 where 

2

1

2

2
1

2

0 0

00

0 0 n







 
 
 
 
 
  

W  

 

according to [13], there are several methods in determining weighting, including: 

1. 
1 , 1,2,...,N i n iW I  , this weight gives the same treatment at each observation. 

2. 
1 , 1,2,...,n i n iW I  , this weight gives the same treatment for each observation in the 

subject. 

3.  -1

i iW V , where cov( ),yiiV 1,2,...,i n ,this weight takes into account the correlation in the 

subject of observation. 

2.4  Optimal Knot Point Selection 

The spline estimator is very dependent on the choice of smoothing parameters to determine the optimal 

knot point. Knot point is the point when the pattern of data changes at different intervals [14]. A good 

method for selecting the optimal smoothing parameter in the spline estimator is generalized cross 

validation (GCV) [7]. The most optimum value of knots is the value of knots with the minimum GCV 

value. The GCV method is generally defined as follows: 

 
 

  
2

1

MSE
GCV

n trace

 
 

k
k

I - A k

 (11) 

with, 

   
21

1

ˆ
n

i i

i

MSE n y y



 k  dan           
-1

T T
A k = D k D k D k D k W  

2.5   Confidence Interval for Regression Parameters  

The basis of the confidence interval approach is the concept of interval estimation. Interval estimation 

is an interval or distance that has a probability that has been formed, the probability includes the limit 

of the value of the actual unknown parameter [1]. Let 1 2, ,..., nX X X  be a random sample that is mutually 

independent with a probability density function  ; ,if x R   . Let  1 2, ,..., nL X X X  and 

 1 2, ,..., nU X X X  be two statistics,    1 2 1 2, ,..., , ,...,n nL X X X U X X X . The random interval 

   1 2 1 2, ,..., , , ,...,n nL X X X U X X X    is the confidence interval for parameter   with a confidence 

interval of 1    0 1  which can be written in the form of equations as follows: 

    1 2 1 2, ,..., , ,..., 1n nP L X X X U X X X      (12) 
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 1 2, ,..., nL X X X  is the lower limit of the confidence interval,  1 2, ,..., nU X X X  is the upper limit of 

the confidence interval and 1   is confidence level 

3.  Result and Discussion 

This study uses secondary data obtained from Badan Pusat Statistik (BPS) publication with an 

observation unit of 33 provinces in Indonesia. The publication used in this study is the publication of 

Data and Information on Poverty from 2011-2017 [15]. The response variables used in this study are 

data on the percentage of poor people in each province in Indonesia for 7 years from 2011 to 2017 with 

predictor variables for the percentage of poor people in Indonesia. The predictor variables are described 

in the following table: 

 

Table 1. Research Variable 

Variable                                                 Description 

ily  Percentage of Poor People in the ist  Province in l year  

ilx  Human Development Index (HDI), Population in the 1st  Province in l year 

ilz  The unemployment rate of the population in the ist Province in l year 

3.1 Interval Estimation of Parameters Regression Semiparametric Spline Truncated for Longitudinal 

Data 

The semiparametric spline truncated multivariable regression model for longitudinal data can be 

determined in the form of equations as follows: 

 
1

(1 )

1

r

il i il i il u i il ui il

u

y x z z K    


      (13) 

with,    

 
 

1

1 ,

0 ,

il ui il ui

il ui

il ui

z K z K
z K

z K


  
  



 

 

where 1,2,...,i n  is the subject observed as much as n with repeated observations until the t-period, so 

equation (14) can be broken down into: 

           1 1

2 1 (1 )...il i il i il i il i r i il ri ily x z z K z K     
         

 

 each observation 1,2,...,i n  and 1,2,...,l t then the equation is obtained as follows: 

    

    

    

 

1 1

11 1 11 1 11 21 11 11 (1 )1 11 1 11

1 1

1 1 1 1 1 21 1 11 (1 )1 1 1 1

1 1

1 1 1 2 1 1 (1 )n 1 1

1

1 2 1

...

...

...

...

r r

t t t t r t r t

n n n n n n n n r n rn n

nt n nt n nt n nt n

y x z z K z K

y x z z K z K

y x z z K z K

y x z z K

    

    

    

   

 

 

 



       

       

       

        1

(1 )n .r nt rn ntz K  
 

 

So the regression model semiparametric spline truncated for longitudinal data can be expressed in 

matrix notation: 
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   2, ,N y = Db +ε ε 0 W        (14) 

with, 

0 0

0 0
, , , .

0 0

       
       
          
       
       
       

1 1 1 1

2 2 2 2

n n n n

y D b ε

y D b ε
y D b ε

y D b ε

 

 

The response y  is a vector measuring , ,dan
1 2 3

W W W ,matrix D  with a size of (p q(1 r))nt n    is a matrix 

that contains parametric components that are approached with linear functions and nonparametric 

components that are approximated by spline truncated. Vector b  is a parameter vector of size 

(p q(1 r))n    and vector ε  is an error vector of size 1nt  . The next step is to get the estimate b  by 

completing the Weighted Least Square (WLS) optimization until the confidence interval with the 

unknown variance is obtained as follows [16]: 
 

, (p q(1 r)) , (p q(1 r))
2 2

ˆ ˆ 1 .
(p q(1 r)) (p q(1 r))

s
nt n nt n

P t t
nt n nt n

 


   
        

   

 
      

      
 

T T

s s

y Cy y Cy
b V b b V  (15) 

 

3.2   Confidence Intervals Application of Parameters Regression Semipaametric Spline Truncated for 

Longitudinal Data in Indonesia 

In semiparametric regression, the determination of parametric and nonparametric components can be 

seen by looking at the pattern of the data. The following is a pattern of the relationship between the 

percentage of poor people with suspected influential factors: 
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Figure 1. Scatterplot percentage of poor people with HDI in Indonesia during 2011-2017. 
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In figure 1, it can be seen that the scatterplot the relationship between the percentage of poor population 

and human development index (HDI) shows a data pattern that approaches linear patterns. Based on this, 

it can be concluded that HDI as a parametric component. While in figure 2 below, there is a distribution 

of plot relationships between the percentage of poor people and the unemployment rate showing a spread 

pattern of data so that the pattern is difficult to know. Therefore, the unemployment component can be 

assumed as a nonparametric component. The following is a scatterplot between the percentage of poor 

people and the unemployment rate. 
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Figure 2. Scatterplot percentage of  poor people with  the unemployment rate in Indonesia during 2007- 

2017. 

3.3   The Best Model Selection 

The first step to choose the best model is to compare the minimum GCV value selected using weighting 

, ,dan
1 2 3

W W W . The following is a comparison table of GCV values in semiparametric spline truncated 

longitudinal data modeling with the case of the percentage of poor people in Indonesia: 

      Table 2. Comparison of GCV Model Values Using Weighting , ,dan
1 2 1

W W W  

Weighting GCV  R2 MSE 

1
W  1.67724843836064 98.6693 0.54767 

2
W  1.67724843836068 98.6693 0.54767 

3
W  1.87780259488047 98.5687 0.61316 

 

Based on Table 2, the best weighting is the first weighting (
1

W ) because it has the smallest GCV 

value compared to the GCV value that uses the first weighting (
2

W ) and the third weighting (
3

W ). After 

determining the best weighting, the next step is to determine the optimal knot point. In this study, the 

criteria used in selecting the optimal knot point also use the smallest GCV value. The point of knots used 

is one knot with an increment of 14 increments. The smallest GCV value using one point knot will be 
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applied to the data on the percentage of poor people in Indonesia with the human development index as 

parametric variables and the unemployment rate as nonparametric variables as follows: 

 

Table 3. Knot Points and GCV Values with W1 

Increment 
Knot ( , 1; 1,2,...,33)

ui
K u i   GCV  

K1,1 K1,2 … K1,33  

1 8.49 7.36 … 3.89 1.6772484 

2 8.35 7.25 … 3.81 1.6859862 

3 8.22 7.14 … 3.74 1.7036725 

4 8.09 7.04 … 3.66 1.7483046 

5 7.96 6.93 … 3.59 1.7681480 

6 7.82 6.82 … 3.51 1.7774347 

7 7.69 6.71 … 3.44 1.7832915 

8 7.55 6.60 … 3.36 1.7866767 

9 7.42 6.49 … 3.29 1.7883768 

10 7.28 6.38 … 3.21 1.7893804 

11 7.15 6.28 … 3.14 1.7899272 

12 7.02 6.17 … 3.06 1.7905828 

13 6.88 6.06 … 2.99 1.7912310 

14 6.75 5.95 … 2.91 1.7916209. 

 

The calculation table in table 3, the minimum GCV value is 1.6772484, which means the optimal 

knot point for one point knot using weighting W1 is in the first increment. The optimal point of knots in 

each province uses weighting W1. So that the best model of semiparametric regression spline truncated 

longitudinal data on the percentage of poor people in Indonesia with one point knots and using W1 

weighting is generally written as follows: 

 
1

2i i iil il il ui ilily x z z K   


      

 

where, i = 1,2,…,33 and l = 1,2,…,7. 

 

Modeling the percentage of poor people in Indonesia in 2011-2017 using a semiparametric spline 

truncated regression with one knot point using weighting W1  produces a coefficient of determination 

(R2) of 98.669 percent and MSE value of 5.476 × 10-1. The predictor variables that are thought to be 

influential are the human development index (HDI) and the unemployment rate. 

3.4   Interpretation of Semiparametric Spline Truncated Regression Model for Longitudinal Data 

Semiparametric spline truncated regression modeling has a good interpretation by looking at changes in 

the predictor variable data pattern which is characterized by the point of knots. As an illustration, the 

following will explain the interpretation of the model in the province with the highest average poor 

population in Indonesia during 2011-2017, namely the Papua Province. Using an example of a predictor 

variable for open unemployment and assuming another predictor variable is constant, then the 

semiparametric spline truncated regression model for the percentage of poor people in Papua Province 

is as follows: 

33 33 3333
1.89579 0.610382 17.25293(z 3.89)l l ll

y x z       

then the interpretation of the model above is: 

0.610382 ; 3.89y z z   

17.2529 67.0276 ; 3.89.y z z    
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The relationship between the unemployment rate and the percentage of poor people assuming another 

predictor variable is constant in the Papua Province can be illustrated in the figure below: 

 

 

Figure 3. Relationship between the unemployment rate and the percentage of poor people in Papua 

Province. 

 

The model in Papua province illustrates when the unemployment rate is less than 3.89 percent, if the 

unemployment rate rises by one percent, then the percentage of poor people will increase by 0.610382. 

Then when the unemployment rate is more than 3.89 percent, if it rises by one percent, the percentage 

of the poor will increase by 17.2529. 

After obtaining the best semiparametric spline truncated regression model for longitudinal data, we 

can find out the significance of the parameters to the model using the confidence interval. Taking this 

conclusion is done by looking at whether the parameter confidence interval contains a value of zero or 

not. If the confidence interval contains a value of zero, then the parameter does not significantly affect 

the model. The following is a confidence interval with a 95 percent confidence level presented in table 

4 bellow: 

Table 4. Confidence Interval of Parameters Regression Semiparametric Spline Truncated for 

Longitudinal Data 

Province Variable Parameter  Parameter Estimation Lower Limit Upper Limit 

Aceh 

1lx  
1  1.01739 0.32642 1.70838* 

1lz  
1  0.13522 0.05583    0.21462* 

21  5.40638 -0.05855 10.87131 

Sumatera 

Utara 

2lx  
2  1.07596 0.16790 1.98403* 

2lz  
2  0.05343 -0.03396 0.14081 

22  -1.82085 -5.42722 1.8554 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

Papua 

nlx  
n  -1.89580 -3.10304 -0.68856* 

nlz  
n  0.61038 0.54047 0.68029* 

2n  17.25293 11.31880 23.18706* 

            *) Significant Level 0.05 
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4.   Summary 

Application of the semiparametric spline regression model truncated for longitudinal data with data on 

the percentage of poor people in Indonesia in 2011-2017 using three types of weighting, including 

, ,and
1 2 3

W W W  and one point knots. The selection of the best model uses the criteria for the smallest GCV 

value where the model is the best, using weighting W1. The selected model has a coefficient of 

determination (R2) of 98.669 percent and the MSE value of 5.476 ×10-1. This shows that the model is 

feasible to use and by using the confidence interval as one of the statistical inferences we can find out 

the significance of the parameters to the model. 
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