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Abstract. Cancer is one of the most common cause of death. One of the diseases that can be 

threaten women all over the world is ovarian cancer. Ovarian cancer is the eighth type of cancer 

that most women suffer from. Estimated that around 225.000 new cases are detected every year 

and around 140.000 people die each year from ovarian cancer. Based on WHO data, published 

in 2014, in Indonesia 7,6% of all cancer deaths are caused by ovarian cancer. So far there is no 

effective screening method for ovarian cancer. Current screening applications for high-risk 

women are still very controversial. There are many classification techniques has been applied 

for ovarian cancer prediction, for example deep learning, neuro fuzzy, neural network, and so 

many more. In this paper, we propose Bayesian logistic regression for ovarian cancer 

classification. We use data of patients suffer from ovarian cancer from RS Al-Islam Bandung to 
demonstrate the method. The accuracy expectation in this paper around 70%. 

1.  Introduction 

43.5% of world’s population are women. Cancer is one of the highest cause of death in high and middle 

income country [1]. The fact that more than 70% women with ovarian cancer diagnosed at an advance 

stage is one of the reasons of the cause high mortality rate. Survival rates for women with an advance 

stage are around 20% - 30% [2]. This is because lack of awareness of prevention and early effective 

detection. If the patient with ovarian cancer can be detected at an early stage, then the survival rates can 

become around 80% - 90%. Furthermore, the survival rate is due to the fact that ovarian cancer is a 

virulent disease. Most women with ovarian cancer live with fear [3].  

There is no specific symptoms in patients with ovarian cancer. Symptoms that may occur are 

changing in bowel habits, significant weight loss, until massive abdominal swelling, so early detection 

is hard to do because of these non-specific complaints [4].  

According to American Cancer Society (2015); ovarian cancer starts from the ovary which is female 

reproductive gland. Ovary produce ovum, then ovum proceed through fallopian tubes to uterus where 

ovum is fertilized and will thrive into a fetus. Ovary also produce the hormone estrogen and progesterone 

in women. It can be seen from the image below [5]: 
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Figure 1. Ovarian cancer (http://www.ovarydisease.com/p/ovarian-cancer.html) 

Some factors caused people suffer from ovarian cancer [6]:  

- Age 

The older the women, the chances of getting ovarian cancer are getting bigger. Most of the 

women with ovarian cancer are women over 63 years old. 

- Obesity 

Women with BMI (Body Mass Index) more than 30 have higher risk of suffering from ovarian 

cancer. 

- Estrogen and Hormone Therapy 

- Family History of Ovarian Cancer 

There are lots of benefit introducing machine learning into medical field, that are more accurate in 

diagnosis, minimize costs, and reduce human resource [7]. Classification is identifying or grouping to 

which category the observation belongs to [8].  

Dirk Timmerman, et. al. use Logistic Regression for distinguish benign and malignant of ovarian 

cancer. The results are sensitivity 93% sensitivity and 76% specificity [9].  

N. Nunes, et. al. use IOTA Logistic Regression Model LR2 for diagnose ovarian cancer. The results 

are 97% sensitivity and 69% specificity [10].  

We use Bayesian Logistic Regression and will be used to classify ovarian cancer dataset from RS Al 

Islam Bandung. 

2.  Method 

2.1.  Logistic Regression 

Logistic regression model originally developed for survival analysis that usually has output (y) in form 

0 or 1 (binary) [11]. Logistic regression model for a binary dependent variable is 

𝐸(𝑦) =
exp⁡(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑖𝑥𝑖)

1 + exp⁡(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑖𝑥𝑖)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

 

where  

𝑦 = {
1⁡; category⁡A
0⁡; category⁡B
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𝑥1, 𝑥2 , … , 𝑥𝑖 are some 𝑖 predictors. 

The model above can be expressed in terms as follows: 

 

𝐸(𝑦) = 𝑃(𝑦 = 1) = 𝜋⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

𝜋 =
exp⁡(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑖𝑥𝑖)

1 + exp⁡(𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑖𝑥𝑖)
⁡⁡⁡⁡⁡⁡(2) 

 

Equation (2) can be expressed in log-odds terms:  

 

ln (
𝜋

1 − 𝜋
) =𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑖𝑥𝑖 ⁡⁡⁡⁡⁡⁡⁡⁡(3) 

 

Given some random samples (𝑌𝑗 , 𝑋1𝑗, … , 𝑋𝑖𝑗), where⁡⁡𝑗 = 1,2,… , 𝑘⁡and⁡𝑌𝑗⁡is a result of Bernoulli 

experiment with probability of success as we can see in equation (3); coefficient 𝛽𝑗 from the model is 

a constant that we don’t know the value and it will be estimated from the data. 

2.2.  Likelihood Function 

Likelihood function from the sample is [12] 

𝐿(𝜷; 𝑌) = ∏𝜋
𝑗

𝑌𝑗
⁡(1 − 𝜋𝑗)

1−𝑌𝑗
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4)⁡

𝑘

𝑗=1

 

Or we can write it in another form,  

𝐿(𝜷; 𝑌) =∏[(
𝑒𝛽0+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖𝑗

1 + 𝑒𝛽0+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖𝑗
)

𝑦𝑗

(1 −
𝑒𝛽0+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖𝑗

1 + 𝑒𝛽0+𝛽2𝑥2+⋯+𝛽𝑖𝑥𝑖𝑗
)

1−𝑦𝑗

]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5)⁡

𝑘

𝑗=1

 

In logistic regression, model parameters can be determined by Maximum Likelihood 

Estimation (MLE) method [12],  

∑[𝑌𝑗 log(𝜋𝑗) + (1 − 𝑌𝑗) log(1 − 𝜋𝑗)]

𝑘

𝑗=1

⁡⁡⁡⁡⁡⁡⁡⁡(6) 

But in this paper we use Bayesian to estimate the model parameters. 

2.3.  Bayes Theorem 

The main foundation of the Bayesian method is the Bayes theorem. Bayes theorem can be stated as 

follows [13], 

𝑃(𝜃|𝑦) =
𝑃(𝑦|𝜃)⁡𝑃(𝜃)

𝑃(𝑦)
⁡⁡⁡⁡⁡⁡⁡⁡(7) 

 

Where ⁡⁡⁡𝑃(𝜃|𝑦) is posterior distribution 

      𝑃(𝜃)     is prior distribution 

      𝑃(𝑦|𝜃)⁡ is sampling distribution or we known as likelihood function 

      𝑃(𝑦)      is marginal likelihood 

According to [13], there are 3 types of Bayes theorem equation 

𝑃(𝜃|𝑦) =
𝑃(𝑦|𝜃)⁡𝑃(𝜃)

𝑃(𝑦)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 

𝑃(𝜃|𝑦) ∝ 𝑃(𝜃)𝑃(𝑦|𝜃)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9)⁡⁡⁡ 
posterior ∝ prior⁡ × ⁡likelihood⁡⁡⁡⁡⁡⁡⁡(10) 
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2.4.  Prior Distribution 

Prior distribution is a distribution that gives information about the parameters. There are several types 

of prior distribution [14],  

a. Non-informative Prior Distribution 

For the selection of the prior distribution is not based on existing data. 

b. Informative Prior Distribution 

This prior distribution is based on parameter value from the prior distribution that has selected either 

conjugate prior or not. Parameter value from the prior distribution will affect prior distribution form 

which will obtained in data information that we has obtained. 

2.5.  Posterior Distribution 

The conditional sample likelihood in (3) is combined with joint prior distribution of the parameters with 

bayes theorem. Recall equation (9), so the joint posterior distribution of the model parameters is [15], 

 

posterior ∝ prior⁡ × ⁡likelihood⁡⁡⁡                                     (11) 

Posterior⁡ ∝ ⁡∏
1

√2𝜋𝜎𝑝
2

exp {−
1

2
(
𝛽𝑝−𝜇𝑝

𝜎𝑝
)

2

}⁡

𝑖

𝑝=1

 

×∏[(
𝑒𝛽0+𝛽1𝑥1𝑗+⋯+𝛽𝑖𝑥𝑖𝑗

1 + 𝑒𝛽0+𝛽1𝑥1𝑗+⋯+𝛽𝑖𝑥𝑖𝑗
)

𝑦𝑗

(1 −
𝑒𝛽0+𝛽1𝑥1𝑗+⋯+𝛽𝑖𝑥𝑖𝑗

1 + 𝑒𝛽0+𝛽1𝑥1𝑗+⋯+𝛽𝑖𝑥𝑖𝑗
)

1−𝑦𝑗

]⁡

𝑘

𝑗=1

⁡⁡⁡⁡⁡(12) 

 

Where the prior is the pdf of normal distribution. 

The marginal posterior distribution can be computed from the joint posterior distribution. The 

means of these distributions are the parameter estimates.  

3.  Experiments 

We use Ovarian Cancer data from RS Al-Islam Bandung. It contains 203 observations, each observation 

consists of 5 attributes. The attributes are: 

1. CA125   (U/ml) 

2. Haemoglobin  (g/dl) 

3. Leukocytes  (103/μl) 
4. Haematocrit  (%) 

5. Platelets                 (103/μl) 

From 203 observations, 130 observations have possibility of suffering from ovarian cancer, and the 

rest have not.  

In this experiment, we use personal computer with i-5 processor 4 GB RAM, and software RStudio 

Version: 1.1.453.  

4.  Result and discussion 

We can see the correlations among the predictors in Fig. 2. Correlation implies a relationship between 

two variables. To interpret Fig. 2, we can see these following values of the correlation’s predictor is 

closest to: 

 -1 indicates a strong negative correlation 

 0 indicates there is no association between the two variables 

 1 indicates a strong positive correlation  

And the formula for the correlations is [16] 

 

𝑟 =
SSxy

√SSxx𝑆𝑆𝑦𝑦
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 
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Where  𝑟 is the correlations among two predictors 

 SSxy = ∑ (𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)𝑘
𝑖=1  

 SSxx = ∑ (𝑥𝑖 − 𝑥̅)2𝑘
𝑗=1  

SSyy = ∑ (𝑦𝑖 − 𝑦̅)𝑘
𝑖=1

2
 

 

 

Figure 2. Correlations among the predictors 

 

Next, we compute the model parameters estimate from the posterior interval. In this experiment we 

use prob = 90%, then we get the lower and upper posterior interval, which is 5%⁡ (100
𝛼

2
%) and 

95%⁡ (100 (1 −
𝛼

2
)%) where 𝛼 = 1 − prob, in Table 1. After that, we compute the posterior median 

estimates from the upper and lower intervals limit, in Table 2. The posterior median estimates is the 

model parameters estimates.  

Table 1 Posterior interval 

Variable 5% 95% 

Intercept  1.57 2.77 

CA 125 (U/ml) 6.97 13.53 

Haemoglobin (g/dl) -1.15 0.02 

Leukocytes (103/μl) -0.38 0.22 

Haematocrit (%) -0.64 0.11 

Platelets (103/μl) -0.09 0.51 
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Table 2. Model parameters estimates 

Variable 
Coefficient Posterior 

Median Estimates 

Intercept 2.11 

CA 125 (U/ml) 10.13 

Haemoglobin (g/dl) -0.37 

Leukocytes (103/μl) -0.07 

Haematocrit (%) -0.28 

Platelets (103/μl) 0.20 

 

There are several ways to measure performance of the method. In this paper we use accuracy, 

precision, recall, and F1 to measure the performance of our method [17].  

Table 3. Confusion matrix 

Prediction 

Actual 

N P 

N TN FN 

P FP TP 

 

 Accuracy 

the level of closeness between the predicted value and the actual value.  

Accuracy =
TP + TN

TP + TN+ FP + FN
⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 Precision 

The level of exactness between the information requested by the user and the answer given by 

the system.  

Precision =
TP

(TP + FP)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 Recall (Sensitivity) 

The success rate of the system in rediscovering information. 

Recall =
TP

(TP + FN)
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 F1 score 

F1 score is one of the evaluation calculations in the retrieval information that combines recall 

and precision. 

F1 =
2 × Precision × Recall

Precision + Recall
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

 

The performance result from this experiment we can see in Table 4. 
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Table 4. Confusion matrix result 

Prediction 

Actual 

0 1 

0 42 15 

1 31 115 

 

Where 0 for negative and 1 for positive. 

And the result for the accuracy, precision, recall, and F1 we can see in Table 5. 

Table 5. Result accuracy, precision, recall and F1 

 Result 

Accuracy 77.33% 

Precision 78.76% 

Recall 88.46% 

F1 83.33% 

 

From the results in Table 4, we can say that the accuracy of this method is 77.33%. Our method is 

good if we see from the precision result, because the level of exactness between the information 

requested by the user and the answer given by the system is 78.76%. The success rate of the system in 

rediscovering information is quiet good, we can see from the recall result is 88.46%. If we see the F1 

score result for our method is 83.33%, it means it was good enough. 

 

5.  Conclusion 

This method for the classification of ovarian cancer data can be one of the reference to help doctor 

in their final decision. But it’s need more modification to get a better accuracy. For next, it can be used 

in another fields, for example in economic field. 
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