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Abstract. Geographically weighted regression (GWR) is a spatial data analysis method where 

spatially varying relationships are explored between explanatory variables and a response variable. 

One unresolved problem with spatially varying coefficient regression models is local collinearity in 

weighted explanatory variables. The consequence of local collinearity is: estimation of GWR 

coefficients is possible but their standard errors tend to be large. As a result, the population values 

of the coefficients cannot be estimated with great precision or accuracy. In this paper, we propose a 

recently developed method to remediate the collinearity effects in GWR models using the Locally 

Compensated Ridge Geographically Weighted Regression (LCR-GWR). Our focus in this study was 

on reviewing the estimation parameters of LCR-GWR model. And also discussed an appropriate 

statistic for testing significance of parameters in the model. The result showed that Parameter 

estimation of LCR-GWR model using weighted least square method is 𝜷̂(𝑢𝑖, 𝑣𝑖, 𝜆𝑖) =
[𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿

∗ + 𝜆𝑰(𝑢𝑖, 𝑣𝑖)]
−1𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗, where the ridge parameter, 𝜆, varies across space. 

The LCR-GWR is not necessarily calibrates the ridge regressions everywhere; only at locations 

where collinearity is likely to be an issue. And the parameter significance test using 𝑡-test, 𝑡 =
𝛽̂𝑘(𝑢𝑖,𝑣𝑖,𝜆𝑖)

𝜎̂√𝑣𝑘𝑘
. 

Keywords: Geographically Weighted Regression, collinearity, Locally Compensated Ridge 

1. Introduction 

Regression analysis is a statistical technique for constructing mathematical model that can be used to 

investigate the relationships among variables. In fact, regression analysis may be the most widely used 

statistical method. Applications of regression are numerous and can be found in almost every field. 

However, if this technique is applied to spatial data, it may result in a significant problem since 

regression examines phenomena as if these parameters were constant over the space. Brunsdon et al. [1] 

developed Geographically Weighted Regression (GWR) as an approach to incorporate the spatial non-

stability in the model. The goal of GWR is to allow spatial data analysts to visualize the spatial variation 

in relationships of explanatory variables to a response variable by way of the estimated regression 

coefficients from each calibration location in the study area [2]. 

Some example of the application of GWR methodology can be found in Nakaya [3] that uses the 

GWR approach for spatial interaction modeling with local distance decay and accessibility parameters. 

Huang and Leung [4] apply GWR to study regional industrialization in China. Longley and Tobón [5] 
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perform a comparative study of several global and local spatial estimation procedures including GWR 

to investigate the heterogeneity in patterns of intra-urban hardship. Interestingly, these applications 

interpret the local parameter patterns without reporting the level correlation in the estimated regression 

coefficients, even though there appears to be coefficient correlation in some map patterns. 

The problem of collinearity amongst the explanatory variables is worsened in the GWR model. 

According to Brunsdon, et al. [6], collinearity is an issue in GWR since: (i) its effects can be more 

pronounced with the smaller samples that are used to calibrate each local regression; and (ii) if the data 

is spatially heterogeneous in terms of its correlation structure, some localities may exhibit collinearity 

when others do not. In both cases, collinearity may cause problems in GWR when none are found 

globally. In addition, the consequence of local collinearity is: estimation of GWR coefficients is possible 

but their standard errors tend to be large. As a result, the population values of the coefficients cannot be 

estimated with great precision or accuracy. Local collinearity in weighted explanatory variables can lead 

to GWR coefficient estimates that are correlated locally and across space, have inflated variances, and 

are at times counterintuitive and contradictory sign to the global regression estimates, i.e., evidence of 

the reversal paradox [2, 7, 8]. 

Ridge regression is one of methods which attempt to circumvent collinearity in global linear 

regression models with constant coefficients. Ridge regression was designed specifically to reduce 

collinearity effects by penalizing the size of regression coefficients and decreasing the influence in the 

model of variables with relatively small variance in the design matrix. To address the issue of 

collinearity in the GWR framework, Wheeler [2] implemented a ridge-regression version of GWR, 

called Geographically Weighted Ridge Regression (GWRR), and found it was able to constrain the 

regression coefficients to counter local correlation present in an existing dataset [9]. 

Here is some previous research about GWRR: Wheeler [9] apply GWRR on Columbus Crime data 

and Sukmantoro [10] apply GWRR to predict the land value of Pondok Indah Residence in South 

Jakarta. The parameter estimation results of the GWRR model used by Wheeler [9] and Sukmantoro 

[10] used one ridge parameter for the entire observation area. Even though it is possible that not all 

observation areas have problems with local collinearity. Adding ridge parameters which actually does 

not have a problem with local collinearity between explanatory variables can actually reduce the 

effectiveness of the model. 

In this paper, we will first introduce an extension to GWRR which allows the ridge parameter to vary 

across space. The term Locally Compensated Ridge-Geographically Weighted Regression (LCR-GWR) 

is proposed for this new method. LCR-GWR was originally proposed by Gollini, et al. [11]. The purpose 

of this paper is to (1) briefly review the parameter estimation of LCR-GWR model and (2) propose 

appropriate statistics for testing significance of the parameters in the model. 

2. Theoretical Review 

2.1 Geographically Weighted Regression (GWR) 

Geographically weighted regression (GWR) is a spatial data analysis method where spatially varying 

relationships are explored between explanatory variables and a response variable. The specification of 

basic GWR model can be written as 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)

𝑝

𝑘=1

𝑥𝑖𝑘 + 𝜀𝑖                                                    (1) 

where, 

𝑦𝑖  : the dependent variable at location-𝑖, for 𝑖 = 1,2,… , 𝑝 

(𝑢𝑖, 𝑣𝑖)  : the coordinates of 𝑖-th point in space 

𝛽0(𝑢𝑖, 𝑣𝑖)  : the intercept parameter at location 𝑖 
𝛽𝑘(𝑢𝑖 , 𝑣𝑖)  : the local regression coefficient for 𝑘-th explanatory variable at location 𝑖 



9th Annual Basic Science International Conference 2019 (BaSIC 2019)

IOP Conf. Series: Materials Science and Engineering 546 (2019) 052022

IOP Publishing

doi:10.1088/1757-899X/546/5/052022

3

𝑥𝑖𝑘  : the value of the 𝑘-th explanatory variable at location 𝑖 
𝜀𝑖  : the error terms, which may follow an independent normal distribution with zero mean and 

homogeneous variance. 

In matrix notation 

𝒚 = 𝑿𝜷(𝑢𝑖, 𝑣𝑖) + 𝜺                                                                    (2) 

The local parameter 𝜷(𝑢𝑖, 𝑣𝑖) are estimated by weighted least square (WLS) estimator, given by 

𝜷̂(𝑢𝑖, 𝑣𝑖) = [𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)]
−1𝑿𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚                                                (3) 

where 𝑿 = [𝑿𝑇(1); 𝑿𝑇(2); … ; 𝑿𝑇(𝑛)]𝑇 is the design matrix of explanatory variables, which typically 

includes a column of 1s for the intercept, 𝑾(𝑢𝑖, 𝑣𝑖) = 𝑑𝑖𝑎𝑔(𝑤1(𝑢𝑖, 𝑣𝑖), 𝑤2(𝑢𝑖, 𝑣𝑖),… ,𝑤𝑛(𝑢𝑖, 𝑣𝑖)) is the 

diagonal weights matrix that varies by calibration location 𝑖, 𝒚 is the 𝑛 × 1 vector of dependent 

variables, and 𝜷̂(𝑢𝑖, 𝑣𝑖) = (𝛽̂0(𝑢𝑖, 𝑣𝑖), 𝛽̂1(𝑢𝑖, 𝑣𝑖),… , 𝛽̂𝑝(𝑢𝑖, 𝑣𝑖))
𝑇
 is the vector of (𝑝 + 1) local 

regression coefficient at location 𝑖 for 𝑝 explanatory variables and an intercept term [9]. 

The weights matrix 𝑾(𝑢𝑖, 𝑣𝑖), is calculated from a kernel function that places more emphasis on 

observations that are closer to the model calibration location 𝑖. There are numerous choices for the kernel 

function, including the Gaussian function, the bi-square nearest-neighbor function, and the exponential 

function [9]. The adaptive Gaussian kernel function is utilized in this paper. The weight from the 

adaptive Gaussian kernel function between any location 𝑗 and the model calibration location 𝑖 is 

calculated as 

𝑤𝑖𝑗 = 𝑒𝑥𝑝 [−
1

2
(
𝑑𝑖𝑗

ℎ𝑖
)

2

]                                                                 (4) 

where 𝑑𝑖𝑗 is the distance between the calibration location 𝑖 and location 𝑗, and ℎ𝑖 is referred to as the 

bandwidth. There are a number of criteria that can be used for bandwidth selection. In this paper, we 

use a cross-validation (CV) approach suggested for local regression by Cleveland [12] and for kernel 

density estimation by Bowman [13]. CV is a technique in which the optimal bandwidth is that which 

minimises the following score 

𝐶𝑉 = ∑(𝑦𝑖 − 𝑦̂≠𝑖(ℎ))
2

𝑛

𝑖=1

                                                                (5) 

where 𝑦̂≠𝑖(ℎ) is the fitted value of 𝑦𝑖 with the observations for point 𝑖 omitted from the calibration 

process [14]. 

2.2 Ridge Regression 

The ridge regression method is known as a fairly efficient corrective action to overcome collinearity in 

linear regression models [15]. According to Kutner, et al. [16], estimation of ridge regression parameters 

was done by standardizing predictor variables and response variables with models 

𝑦𝑖
∗ = 𝛽0 + ∑ 𝛽𝑘

𝑝

𝑘=1

𝑥𝑖𝑘
∗ + 𝜀𝑖                                                               (6) 

 

 

 

where, 
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𝑦𝑖
∗ =

1

√𝑛 − 1
(
𝑦𝑖 − 𝑦̅

𝑠𝑦
),          𝑥𝑖𝑘

∗ =
1

√𝑛 − 1
(
𝑥𝑖𝑘 − 𝑥̅𝑘

𝑠𝑥
) 

𝑠𝑦 = √
∑ (𝑦𝑖 − 𝑦̅)2

𝑖

𝑛 − 1
,           𝑠𝑥 = √

∑ (𝑥𝑖𝑘 − 𝑥̅𝑘)2
𝑖

𝑛 − 1
                                          (7) 

The parameter estimation of the ridge regression model is obtained in the same way as the ordinary 

least square (OLS) method, namely by minimizing error sum square. The ridge regression adds an 

obstacle to the least square so that the coefficient shrinks near zero [17]. In the ridge regression method, 

the resulting parameter estimator is a biased estimator but tends to be more stable and more potential to 

produce better accuracy compared to the predicted results using OLS. 

The estimator of ridge regression parameters is 

𝜷̂𝑟𝑖𝑑𝑔𝑒 = (𝑿∗𝑇𝑿∗ + 𝜆𝑰)
−1

𝑿∗𝑇𝒚∗                                                           (8) 

where the constant λ is the magnitude of the bias coefficient of the parameter estimator located at the 

interval 0 < 𝜆 < 1. 

3. Result and Discussion 

3.1 Estimation of Parameters in Locally Compensated Ridge-Geographically Weighted Regression 

Model 

The Locally Compensated Ridge-Geographically Weighted Regression (LCR-GWR) model is a 

development of the GWRR model using one bias coefficient for a given region. That is, if there are 𝑁 

observation regions, there are 𝑛 different ridge bias coefficients. This method produces a ridge bias 

coefficient locally. The parameters of the ridge are left to vary in each region adjusting to the effect of 

collinearity between explanatory variables in each region so that the expected parameter coefficients on 

the model are expected to be more accurate. 

The LCR-GWR model can be expressed by 

𝑦𝑖 = 𝛽0(𝑢𝑖, 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖)𝑥𝑖𝑘

𝑝

𝑘=1

+ 𝜀𝑖                                               (9) 

where, 𝛽𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) is the local regression coefficient for 𝑘-th explanatory variable at location 𝑖 and a 

specified value of the ridge bias coefficients at location 𝑖, 𝜆𝑖. 

The solution of parameter estimation for the LCR-GWR model is done using the WLS method on 

the GWR model by first centering on the 𝑦 variable and centering-scaling on 𝑋 variables. So that the 

equation of the GWR model can be written 

𝑦𝑖
∗ = 𝛽0(𝑢𝑖 , 𝑣𝑖) + ∑ 𝛽𝑘(𝑢𝑖, 𝑣𝑖)𝑥𝑖𝑘

∗

𝑝

𝑘=1

+ 𝜀𝑖                                                 (10) 

or in the matrix form 

𝒚∗ = 𝑿∗𝜷(𝑢𝑖, 𝑣𝑖) + 𝜺∗                                                               (11) 

By adding weighting elements 𝑾(𝑢𝑖, 𝑣𝑖) to Equation (11), the number of error sum squares (ESS) is 

obtained as follows 
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𝜺∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝜺
∗ = 𝒚∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗ − 2𝜷𝑇(𝑢𝑖, 𝑣𝑖)𝑿
∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗ 

+𝜷𝑇(𝑢𝑖, 𝑣𝑖)𝑿
∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿

∗𝜷(𝑢𝑖, 𝑣𝑖)                                          (12) 

The parameter estimation solution for the LCR-GWR model is obtained by adding the coefficient 

𝜆𝑰(𝑢𝑖, 𝑣𝑖) which is a Locally Compensated (LC) value of 𝜆 in the region (𝑢𝑖, 𝑣𝑖), so that Equation (12) 

becomes 

𝜺∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝜺
∗ = 𝒚∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗ − 2𝜷𝑇(𝑢𝑖, 𝑣𝑖)𝑿
∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗ 

+𝜷𝑇(𝑢𝑖, 𝑣𝑖) (𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿
∗ + 𝜆𝑰(𝑢𝑖, 𝑣𝑖))𝜷(𝑢𝑖, 𝑣𝑖)            (13)  

Next, Equation (13) is derived from 𝜷𝑇(𝑢𝑖, 𝑣𝑖) and the result is equal to zero, obtained 

𝜕𝜺∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝜺
∗

𝜕𝜷𝑇(𝑢𝑖, 𝑣𝑖)
|
𝜷̂(𝑢𝑖,𝑣𝑖)

= 0 

⟺ −2𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚
∗ + 2 (𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿

∗ + 𝜆𝑰(𝑢𝑖, 𝑣𝑖))𝜷(𝑢𝑖, 𝑣𝑖) = 0 

⟺ (𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿
∗ + 𝜆𝑰(𝑢𝑖, 𝑣𝑖))𝜷(𝑢𝑖, 𝑣𝑖) = 𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗ 

⟺ 𝜷̂(𝑢𝑖, 𝑣𝑖) = [𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿
∗ + 𝜆𝑰(𝑢𝑖, 𝑣𝑖)]

−1
𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗ 

So that the estimator of the LCR-GWR model, 𝜷̂(𝑢𝑖 , 𝑣𝑖), is obtained at the specified value λ for each 

location as follows: 

𝜷̂(𝑢𝑖 , 𝑣𝑖 , 𝜆𝑖) = [𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿
∗ + 𝜆𝑰(𝑢𝑖, 𝑣𝑖)]

−1
𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚

∗                        (14) 

where, 𝜷̂(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) =

[
 
 
 
 
 
𝛽̂0(𝑢1, 𝑣1, 𝜆0)

𝛽̂1(𝑢1, 𝑣1, 𝜆1)

𝛽̂2(𝑢2, 𝑣2, 𝜆2)
⋮

𝛽̂𝑝(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) ]
 
 
 
 
 

. 

The value of the ridge regression parameter is obtained by connecting the eigenvalue and conditional 

number (𝑐) of matrix multiplication (𝑿𝑇𝑿). If the eigenvalues of matrix (𝑿𝑇𝑿) are 𝜖1, 𝜖2, … , 𝜖𝑝 then 

the eigenvalues of matrix (𝑿𝑇𝑿 + 𝜆𝑰) are obtained 𝜖1 + 𝜆, 𝜖2 + 𝜆,… , 𝜖𝑝 + 𝜆. The conditional number 

(𝑐) of a square matrix is defined as 𝜖1 𝜖𝑝⁄ , where 𝜖1 is the largest eigenvalue and 𝜖𝑝 is the smallest 

eigenvalue, so the conditional number (𝑐) for the ridge-adjusted matrix is defined as 𝜖1 + 𝜆 𝜖𝑝 + 𝜆⁄ . By 

re-arranging the terms, the ridge bias coefficient obtained from a particular conditional number (𝑐) is 

𝜆 = ((𝜖1 − 𝜖𝑝) (𝑐 − 1)⁄ ) − 𝜖𝑝.  

The LCR-GWR model fits local ridge regressions with their own ridge parameters (i.e., the ridge 

parameter varies across space), and only fits such ridge regressions at locations where the local condition 

number is above a user-specified threshold. Thus a biased local estimation is not necessarily used 

everywhere, only at locations where collinearity is likely to be an issue. At all other locations, the usual 

un-biased estimator is used, hoping to produce a more accurate model with local collinearity problems 

and spatial heterogeneity [11]. 
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3.2 Parameters Significance Test of Locally Compensated Ridge-Geographically Weighted Regression 

Model 

Testing the parameters significance of the GWRR model using the following hypothesis 

𝐻0: 𝛽𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) = 0,   𝑖 = 0, 1, 2,… , 𝑛 

versus 

𝐻1: ∃𝛽𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) ≠ 0. 

The estimator of the parameter 𝜷(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) is exactly distributed as a normal distribution with 

𝜷(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) mean and 𝑽𝑽𝑇𝜎2 variance-covariance matrices, where 𝑽 = [𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿
∗ +

𝜆𝑰(𝑢𝑖, 𝑣𝑖)]
−1

𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖). Mathematically the test statistics used can be written 

𝑡 =
𝛽̂𝑘(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖)

𝜎̂√𝑣𝑘𝑘

                                                                      (15) 

where 𝑣𝑘𝑘 is the 𝑘-th diagonal element of the matrix 𝑽𝑽𝑇and 𝜎̂ is the root of 𝜎̂2 =
𝐸𝑆𝑆𝐿𝐶𝑅−𝐺𝑊𝑅

𝑝1
, with 

𝐸𝑆𝑆𝐿𝐶𝑅−𝐺𝑊𝑅 = 𝜺̂𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝜺̂ = (𝒚∗ − 𝒚̂∗)𝑇(𝒚∗ − 𝒚̂∗) = (𝒚∗)𝑇(𝑰 − 𝑺)𝑇(𝑰 − 𝑺)𝒚∗          (16) 

and 

𝑝1 = 𝑡𝑟[(𝑰 − 𝑺)𝑇(𝑰 − 𝑺)]                                                               (17) 

then 

𝑺 =

[
 
 
 
 
 𝑥1

∗𝑇
[𝑿∗𝑇𝑾(𝑢1, 𝑣1)𝑿

∗ + 𝜆𝑰(𝑢1, 𝑣1)]
−1

𝑿∗𝑇𝑾(𝑢1, 𝑣1)

𝑥2
∗𝑇

[𝑿∗𝑇𝑾(𝑢2, 𝑣2)𝑿
∗ + 𝜆𝑰(𝑢2, 𝑣2)]

−1
𝑿∗𝑇𝑾(𝑢2, 𝑣2)

⋮

𝑥𝑛
∗𝑇[𝑿∗𝑇𝑾(𝑢𝑛, 𝑣𝑛)𝑿∗ + 𝜆𝑰(𝑢𝑛, 𝑣𝑛)]

−1
𝑿∗𝑇𝑾(𝑢𝑛, 𝑣𝑛)]

 
 
 
 
 

                             (18) 

The 𝐻0  rejection criterion is if |𝑡| > 𝑡
𝛼 2⁄ (

𝑝1
2

𝑞2
)
. With, 𝑞2 = 𝑡𝑟(𝑩2), where 𝑩 = (𝑰 − 𝑲) −

(𝐼 − 𝑆)𝑻(𝐼 − 𝑆) and 𝑲 = 𝑿∗[𝑋∗𝑻𝑊(𝑢𝑖 , 𝑣𝑖)𝑿
∗ + 𝜆𝑰(𝑢𝑖 , 𝑣𝑖)]

−1
𝑋∗𝑻𝑊(𝑢𝑖, 𝑣𝑖). 

4. Concluding Remarks 

Based on results and discussion, the following conclusions is obtained. Parameter estimation of LCR-

GWR model using weighted least square method is 𝜷̂(𝑢𝑖, 𝑣𝑖 , 𝜆𝑖) = [𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝑿
∗ +

𝜆𝑰(𝑢𝑖, 𝑣𝑖)]
−1

𝑿∗𝑇𝑾(𝑢𝑖, 𝑣𝑖)𝒚
∗, where the ridge parameter, 𝜆, varies across space. The LCR-GWR is not 

necessarily calibrates the ridge regressions everywhere; only at locations where collinearity is likely to 

be an issue. And the parameter significance test using 𝑡-test, 𝑡 =
𝛽̂𝑘(𝑢𝑖,𝑣𝑖,𝜆𝑖)

𝜎̂√𝑣𝑘𝑘
. 
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