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Abstract. Virotherapy is one of the most promising therapies in the treatment of tumors which 

may be further combined with chemotherapy to accelerate the healing rate. In this article, we 

propose a mathematical model for the treatment of tumors using oncolytic virus and 

chemotherapy. This model takes the form of nonlinear ordinary differential equations 

describing the interactions between uninfected tumor cells, infected tumor cells, an oncolytic 

virus, and chemotherapy. It is assumed that the rate of infection between uninfected tumor cells 

and infected tumor cells is in a saturated form. The saturation effect takes into account the fact 

that the number of contacts between them reaches the maximum value when the immune 

system works to stop the virus. The dynamical analysis, which includes the existence of 

equilibrium points, and its stability analysis is investigated. The analysis result shows that the 

system has three equilibrium points: tumor-free equilibrium point, virus-free equilibrium point 

and endemic equilibrium point. It is proven that these equilibrium points are conditionally 

stable. The numerical simulations show the successful combination of chemotherapy and 

virotherapy using an oncolytic virus in eliminating the tumor cells. 

Keywords: tumor, oncolytic virus, chemotherapy, saturated infected rate, stability analysis 

1.  Introduction 

A tumor is one of the deadliest diseases in the world. It is a group of diseases characterized by 

uncontrolled cell growth. The tumor can attack the surrounding tissue and spread to other body parts 

[1]. This disease can be caused by environmental factors, genetic, radiation, viruses, alcoholism, and 

others. Traditional tumor treatments used to fight against the tumor are surgery, chemotherapy, and 

radiotherapy [2]. Traditional treatment however not only kills tumor cells but also damage human 

body normal cells at the same time [3]. Some common side of using traditional treatment involves hair 

loss, fatigue, nausea, and decrease blood cell count [4]. The development of science in the field of 

genetic engineering, has found treatment using oncolytic virus. An oncolytic virus is a kind of tumor 

killer virus, which can infect and lyse tumor cells and spread through the tumor while leaving normal 

cells largely unharmed [5]. An oncolytic virus can be replicated in the infected tumor cells. When an 

infected tumor cell is lysed, it can burst out a mass of new oncolytic viruses. Then, new viruses can 
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infect much more neighboring tumor cells [6]. The interaction between virus and tumor cells is very 

complex. The first mathematical models of oncolytic virus therapy considered ordinary differential 

equations that describe the basic interaction between two types of tumor (uninfected and infected). 

In 2001, Wodarz proposed a mathematical model, which describes the interaction between two 

types of tumor cells (uninfected and infected) with bilinear infection rate [7]. In 2006, Novozhilov et 

al. modified the Wodarz model by changing the bilinear infection rate to standard infection rate [8]. In 

2003, Wodarz modified his previous model by adding virus population [9]. In 2006, Dingli et al. 

modified the model proposed by Wodarz by adding the assumption that the death rate of uninfected 

tumor cells is contained in the logistic growth rate. Furthermore, the natural death rate and the other 

death rate of tumor cells caused by virus infection are considered as a unity called uninfected tumor 

cells death rate [10]. In 2008, Dingli et al. modified their previous model by adding two assumptions, 

namely the process of fusion between tumor cells and an oncolytic virus is resulting infected tumor 

cells and each virus is assumed to be dead after infecting tumor cell [11]. Then, Tian modified the 

model proposed by Dingli et al. by adding a parameter that represents the burst size of new viruses 

coming out from the lysis of infected tumor cells [12]. In 2011, Agarwal modified the model proposed 

by Novozhilov et al. by changing the standard infection rate into saturated rate [13]. Malinzi et al. in 

2017, extend models by presenting by Tian et al. Malinzi et al. (2017) develop a mathematical model 

which combines virotherapy and chemotherapy treatments. The model includes uninfected tumor 

cells, infected tumor cells, free virus particles, and chemotherapy drug [14]. Virus infection of the 

tumor is considered to be of Michaelis-Menten form. 

In this paper, we modify the dynamics model of Malinzi et al. by changing the Michaelis-Menten 

infection rate into a saturated rate. In section 2, we introduce a mathematical model. The condition for 

the existence of equilibrium point and stability are analyzed in Section 3. Next, the numerical 

simulations are presented in Section 5. Finally, conclusions are presented in section 5. 

2.  Mathematical Model 

In this section, we propose and formulate our new mathematical model describing the growth of the 

tumor and its interaction with the oncolytic virus and chemotherapy with a saturated rate. This model 

contains four variables, namely, uninfected tumor cell population U(t), infected tumor cell population 

I(t), free virus particles population V(t), and chemotherapy population C(t).  The model is given by the 

following nonlinear system of differential equations.  

𝑑𝑈

𝑑𝑡
= 𝑟𝑈 (1 −

𝑈+𝐼

𝐾
) −

𝛽𝑈𝑉

𝑈+𝐼+𝛼
−

𝛿𝑈𝑈𝐶

𝐾𝑐+𝐶
, 

𝑑𝐼

𝑑𝑡
=

𝛽𝑈𝑉

𝑈+𝐼+𝛼
− 𝛿𝐼 −

𝛿𝐼𝐼𝐶

𝐾𝑐+𝐶
,            (1) 

𝑑𝑉

𝑑𝑡
= 𝑏𝛿𝐼 −

𝛽𝑈𝑉

𝑈+𝐼+𝛼
− 𝛾𝑉, 

𝑑𝐶

𝑑𝑡
= 𝜇 − 𝜓𝐶, 

with initial conditions : 𝑈(0) = 𝑈𝑜, 𝐼(0) = 𝐼𝑜, 𝑉(0) = 𝑉𝑜, 𝐶(0) = 𝐶𝑜. The constant 𝑈(0), 𝐼(0), 𝑉(0), 

𝐶(0) we assume to be non-negative and all parameter model 𝑟, 𝐾, 𝛽, 𝛼, 𝛿𝑈, 𝛿𝑖, 𝐾𝑐, 𝛿, 𝑏, 𝛾, 𝜇 consider 

positive. The term 𝑟𝑈 (1 −
𝑈+𝐼

𝐾
) represents tumor growth with rate r and K is carrying capacity or 

maximum tumor size so that 𝑈 + 𝐼 ≤ 𝐾. The term 
𝛽𝑈𝑉

𝑈+𝐼+𝛼
 represents infected tumor cells by an 

oncolytic virus which are limited maximum tumor size and immune response. 𝛽 is the infection rate 

and 𝛼 response immune. Drug effect to the uninfected and infected tumor cells is respectively 

described by the terms 
𝛿𝑈𝑈𝐶

𝐾𝑐+𝐶
 and 

𝛿𝑖𝐼𝐶

𝐾𝑐+𝐶
, where 𝛿𝑈, 𝛿𝑖 are lysis rate and 𝐾𝑐 are Michaelis-Menten 

constants. Virus production is dependent on its burst size, that is the larger the burst size, the higher 

the number of viruses produced. Virus production is taken to be 𝑏𝛿𝐼, where 𝑏 is virus burst size and δ 

is the infected tumor cell natural death rate. Virus deactivation in the body tissue is represented by 𝛾𝑉 
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where 𝛾 is the rate of decay. Term 𝜇 represents drug injection, and  𝜓𝐶 is the natural drug 

concentration decay, where 𝜓 is the rate of decay. 

3.  Analysis Model 

In this section, we will discuss the equilibrium points and stability of the system (1). An equilibrium 

point is a point at which variable of a system remains unchanged over time. In order to get the possible 

equilibrium, setting the right sides of all equation of system (1) equal to zero.  

𝑟𝑢 (1 −
𝑈+𝐼

𝐾
) −

𝛽𝑈𝑉

𝑈+𝐼+𝛼
−

𝛿𝑈𝑈𝐶

𝐾𝑐+𝐶
= 0, 

𝛽𝑈𝑉

𝑈+𝐼+𝛼
− 𝛿𝐼 −

𝛿𝐼𝐼𝐶

𝐾𝑐+𝐶
= 0,  

𝑏𝛿𝐼 −
𝛽𝑈𝑉

𝑈+𝐼+𝛼
− 𝛾𝑉 = 0,     (2) 

 𝜇 − 𝜓𝐶 = 0. 

The system (2) has three positive equilibrium points, namely a tumor-free equilibrium point 𝐸0 =

(0,0,0,
𝜇

𝜓
), virus-free equilibrium point 𝐸1 = (𝐾 (1 −

𝛿𝑢𝐶

𝑟(𝐾𝑐+𝐶)
) , 0,0,

𝜇

𝜓
), and an endemic equilibrium 

point 𝐸∗ = (𝑈∗, 𝐼∗, 𝑉∗, 𝐶∗), where 𝐼 =
𝛽𝑈𝐴−𝐷𝑈𝛾−𝐷𝛼𝛾

𝐷𝛾
, 𝑉 =

𝛽𝑈𝐴2−𝐴𝐷𝑈𝛾−𝐴𝐷𝛼𝛾

𝐷𝛾2 , and 𝑈∗ is determined by 

𝑎𝑈2 + 𝑏𝑈 − 𝑐 = 0, 

with  a =
𝑟𝛽𝐴

𝐾𝐷𝛾
,   

 b =
𝛽𝐴

𝛾
−

𝛼𝑟

𝐾
− 𝑟 − 𝐷 +

𝛿𝑢𝐶

𝐾𝑐+𝐶
,   

 c = −(𝛿 +
𝛿𝑖𝐶

𝐾𝑐+𝐶
) 𝛼, 

 A =  𝑏𝛿 − 𝛿 −
𝛿𝑖𝐶

𝐾𝑐+𝐶
,  

 D = (𝛿 +
𝛿𝑖𝐶

𝐾𝑐+𝐶
). 

The complicated form of equilibrium point 𝐸1 and 𝐸∗ needs the investigation on its existence. The 

result of the investigations is briefly stated in the following proposition.  

1. The equilibrium point 𝐸1 exists when 𝑟(𝜓𝐾𝑐 + 𝜇) > 𝛿𝑢𝜇.     

2. The equilibrium point 𝐸∗ exists when 𝑏𝛿 > 𝛿 +
𝛿𝑖𝐶

𝐾𝑐+𝐶
. 

The investigation of the local stability of equilibrium points of a nonlinear system is performed by 

linearizing the system around the point. This process is resulting in a Jacobian matrix of the system, 

which can be used to determine the stability by considering the eigenvalue of the matrix. When all of 

the eigenvalues are negative then the equilibrium point is stable. Otherwise, it is unstable. The 

Jacobian matrix of the system (1) is  

𝐽(𝐸) =

[
 
 
 
 
 𝑟 (1 −

2𝑈+𝐼

𝐾
) −

𝛽𝑉(𝐼+𝛼)

(𝑈+𝐼+𝛼)2
−

𝛿𝑈𝐶

𝐾𝐶+𝐶
−

𝑅𝑈

𝐾
+

𝛽𝑈𝑉

(𝑈+𝐼+𝛼)2
−

𝛽𝑈

𝑈+𝐼+𝛼
−

𝛿𝑈𝑈𝐾𝐶

(𝐾𝐶+𝐶)2

𝛽𝑉(𝐼+𝛼)

(𝑈+𝐼+𝛼)2
−

𝛽𝑈𝑉

(𝑈+𝐼+𝛼)2
− 𝛿 −

𝛿𝐼𝐶

𝐾𝐶+𝐶

𝛽𝑈

𝑈+𝐼+𝛼
−

𝛿𝐼𝐼𝐾𝐶

(𝐾𝐶+𝐶)2

−
𝛽𝑉(𝐼+𝛼)

(𝑈+𝐼+𝛼)2
𝑏𝛿 +

𝛽𝑈𝑉

(𝑈+𝐼+𝛼)2
−

𝛽𝑈

𝑈+𝐼+𝛼
− 𝛾 0

0 0 0 −𝜓 ]
 
 
 
 
 

. 

3.1.  Behavior of tumor-free equilibrium point 

The Jacobian matrix evaluated at 𝐸0 = (0,0,0,
𝜇

𝜓
) is 
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𝐽(𝐸0) =

[
 
 
 
 
 𝑟 −

𝛿𝑈𝐶

𝐾𝐶+𝐶
0 0 0

0 −𝛿 −
𝛿𝐼𝐶

𝐾𝐶+𝐶
0 0

0 𝑏𝛿 −𝛾 0
0 0 0 −𝜓]

 
 
 
 
 

.    (3) 

The eigenvalue is 𝜆1 = 𝑟 −
𝛿𝑈

𝝁

𝝍

𝐾𝐶+
𝝁

𝝍

, 𝜆2 = −𝛿 −
𝛿𝐼

𝝁

𝝍

𝐾𝐶+
𝝁

𝝍

, 𝜆3 = −𝛾, and 𝜆4 = −𝜓. Since 𝜆2, 𝜆3, 𝜆4 are 

negative, then 𝐸0 will be locally asymptotically stable if 𝑟 <
𝛿𝑈

𝝁

𝝍

𝐾𝐶+
𝝁

𝝍

.  

3.2.  Behavior of virus-free equilibrium point 

The Jacobian matrix evaluated at 𝐸1 = (𝐾 (1 −
𝛿𝑢𝐶

𝑟(𝐾𝑐+𝐶)
) , 0,0,

𝜇

𝜓
) is 

𝐽(𝐸1) =

[
 
 
 
 
 
 
 
 
 
 𝛿𝑈

𝜇

𝜓
(𝑟−1)

𝐾𝐶+
𝜇

𝜓

− 𝑟 − 𝜆
𝛿𝑈

𝜇

𝜓

𝐾𝐶+
𝜇

𝜓

− 𝑟
𝛽𝐾(𝛿𝑈

𝜇

𝜓
−𝑟(𝐾𝐶+

𝜇

𝜓
))

((𝛼+𝐾)𝑟(𝐾𝐶+
𝜇

𝜓
))−𝐾𝛿𝑈

𝜇

𝜓

𝛿𝑈𝐾𝐶𝐾(𝑟(𝐾𝐶+
𝜇

𝜓
)−𝛿𝑈

𝜇

𝜓
)

𝑟(𝐾𝐶+
𝜇

𝜓
)
3

0 −𝛿 −
𝛿𝐼

𝜇

𝜓

𝐾𝐶+
𝜇

𝜓

− 𝜆
𝛽𝐾(𝑟(𝐾𝐶+

𝜇

𝜓
)−𝛿𝑈

𝜇

𝜓
)

((𝛼+𝐾)𝑟(𝐾𝐶+
𝜇

𝜓
))−𝐾𝛿𝑈

𝜇

𝜓

0

0 𝑏𝛿
𝛽𝐾(𝛿𝑈

𝜇

𝜓
−𝑟(𝐾𝐶+

𝜇

𝜓
))

((𝛼+𝐾)𝑟(𝐾𝐶+
𝜇

𝜓
))−𝐾𝛿𝑈

𝜇

𝜓

− 𝛾 − 𝜆 0

0 0 0 −𝜓 − 𝜆 ]
 
 
 
 
 
 
 
 
 
 

. (4) 

The characteristic polynomial of the matrix 𝐽(𝐸1) takes the following forms : 

P(𝜆) = (−𝜓 − 𝜆)(
𝛿𝑈

𝜇

𝜓
(𝑟−1)

𝐾𝐶+
𝜇

𝜓

− 𝑟 − 𝜆) (𝑎1𝜆
2 + 𝑎1𝜆 + 𝑎3) = 0,    (5) 

where 

𝑎1 = 1,  

𝑎2 = 𝛾 +
𝛿𝐼

𝜇

𝜓

𝐾𝐶+
𝜇

𝜓

− 𝛿 −
𝛽𝐾(𝛿𝑈

𝜇

𝜓
−𝑟(𝐾𝐶+

𝜇

𝜓
))

((𝛼+𝐾)𝑟(𝐾𝐶+
𝜇

𝜓
))−𝐾𝛿𝑈

𝜇

𝜓

,  

𝑎3 =
𝛽𝐾(𝛿𝑈

𝜇

𝜓
−𝑟(𝐾𝐶+

𝜇

𝜓
))

((𝛼+𝐾)𝑟(𝐾𝐶+
𝜇

𝜓
))−𝐾𝛿𝑈

𝜇

𝜓

(𝛿 − 𝛿
𝛽𝐾(𝑟(𝐾𝐶+

𝜇

𝜓
)−𝛿𝑈

𝜇

𝜓
)

((𝛼+𝐾)𝑟(𝐾𝐶+
𝜇

𝜓
))−𝐾𝛿𝑈

𝜇

𝜓

−
𝛿𝐼

𝜇

𝜓

𝐾𝐶+
𝜇

𝜓

) + 𝛾 (
𝛿𝐼

𝜇

𝜓

𝐾𝐶+
𝜇

𝜓

− 𝛿).   

The eigenvalue of the matrix 𝐽(𝐸1) are 

𝜆1 = −𝜓, 𝜆2 =
𝛿𝑈

𝜇

𝜓
(𝑟−1)

𝐾𝐶+
𝜇

𝜓

− 𝑟,  𝜆3 =
−(𝑎2)−√(𝑎2)2−4𝑎3

2
, 𝜆4 =

−(𝑎2)+√(𝑎2)2−4𝑎3

2
. 

The eigenvalue 𝜆1 and 𝜆3 are both negative for all non-negative parameter values, while eigenvalue 

𝜆2 can be negative if  
𝛿𝑈

𝜇

𝜓
(𝑟−1)

𝐾𝐶+
𝜇

𝜓

< 𝑟 and eigenvalue 𝜆4 can be negative if  

(𝑎2) + 4(𝑎3) < (𝑎2), 

𝛾 > 𝑏 (
𝑏𝛿𝑐

(𝑎−𝛿)
+ 1), 

Then 𝜆4 are negative. Hence all four eigenvalues are negative, so 𝐸1 is locally stable. 
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3.3.  Behavior of endemic equilibrium point 

The Jacobian matrix at 𝐸∗ = (𝑈∗, 𝐼∗, 𝑉∗, 𝐶∗) is 

J(𝐸∗) =

[
 
 
 
 
 𝑟 (1 −

2𝑈∗+𝐼∗

𝐾
) −

𝛽𝑉∗(𝐼+𝛼)

(𝑈∗+𝐼∗+𝛼)2
−

𝛿𝑈𝐶

𝐾𝐶+𝐶
−

𝑅𝑈∗

𝐾
+

𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
−

𝛽𝑈∗

𝑈∗+𝐼∗+𝛼
−

𝛿𝑈𝑈∗𝐾𝐶

(𝐾𝐶+𝐶)2

𝛽𝑉∗(𝑉∗+𝛼)

(𝑈∗+𝐼∗+𝛼)2
−

𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
− 𝛿 −

𝛿𝐼𝐶

𝐾𝐶+𝐶

𝛽𝑈∗

𝑈∗+𝐼∗+𝛼
−

𝛿𝐼𝐼𝐾𝐶

(𝐾𝐶+𝐶)2

−
𝛽𝑉∗(𝑉∗+𝛼)

(𝑈∗+𝐼∗+𝛼)2
𝑏𝛿 +

𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
−

𝛽𝑈∗

𝑈∗+𝐼∗+𝛼
− 𝛾 0

0 0 0 −𝜓 ]
 
 
 
 
 

.              (6) 

The characteristic equation associated with 𝐽(𝐸∗) is given by 

(−𝜓 − 𝜆)(𝑚0𝜆
3 + 𝑚1𝜆

2 + 𝑚2𝜆 + 𝑚3) = 0, 

where : 

A =
𝛽𝑉∗(𝐼+𝛼)

(𝑈∗+𝐼∗+𝛼)2
+

𝛿𝑈𝐶

𝐾𝐶+𝐶
+

𝛿𝐼𝐶

𝐾𝐶+𝐶
+

𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
+ 𝛿 − 𝑟 (1 −

2𝑈∗+𝐼∗

𝐾
), 

B =
𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
+ 𝛿 +

𝛿𝐼𝐶

𝐾𝐶+𝐶
,  

C =
𝛽𝑉∗(𝐼+𝛼)

(𝑈∗+𝐼∗+𝛼)2
+

𝛿𝑈𝐶

𝐾𝐶+𝐶
− 𝑟 (1 −

2𝑈∗+𝐼∗

𝐾
), 

D =
𝛽𝑉∗(𝐼+𝛼)

(𝑈∗+𝐼∗+𝛼)2
(

𝑅𝑈∗

𝐾
−

𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
), 

M =
𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ , 

m0 = 1, 

m1 =
1

𝑀
(

𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ 𝐴 +
𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ 𝛾 + 1), 

m2 =
1

𝑀
(𝐴 +

𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ 𝛾𝐴 +
𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ 𝐵𝐶 +
𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ 𝐷 − 𝑏𝛿 −
𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
−

𝛽𝑉∗(𝑖∗+𝛼)

(𝑈∗+𝐼∗+𝛼)2
) 𝜆,  

m3 =
1

𝑀
((𝐵𝐶 + 𝐷) (1 +

𝑈∗+𝐼∗+𝛼

𝛽𝑈∗ 𝛾) + (𝑏𝛿 +
𝛽𝑈∗𝑉∗

(𝑈∗+𝐼∗+𝛼)2
) (𝑟 (1 −

2𝑈∗+𝐼∗

𝐾
) −

𝛿𝑈𝐶

𝐾𝐶+𝐶
) + (

𝛽𝑉∗(𝑖∗+𝛼)

(𝑈∗+𝐼∗+𝛼)2
) (−

𝑅𝑈∗

𝐾
− 𝛿 −

𝛿𝐼𝐶

𝐾𝐶+𝐶
)). 

Eigenvalue 𝜆1 = −𝜓, which have negative real parts. Thus, we only need to consider the remaining 

three eigenvalues, which can be obtained by the following equation,  

𝑚0𝜆
3 + 𝑚1𝜆

2 + 𝑚2𝜆 + 𝑚3 = 0    (7) 

According to the Routh-Hurwitz criteria [15], the eigenvalues of equation (7) have negative real parts 

if and only if 𝑚1 > 0,𝑚3 > 0, and 𝑚1𝑚2 − 𝑚3 > 0.  

4.  Numerical Simulation 

In this section, we present a numerical simulation of the model (1). The numerical simulations of the 

model equations are illustrated using MATLAB. The first simulation is aimed to show the stability of 

equilibrium 𝐸0 = (0,0,0,
𝜇

𝜓
), the second simulations show the stability of equilibrium 𝐸1 =

(𝐾 (1 −
𝛿𝑢

𝜇

𝜓

𝑟(𝐾𝑐+
𝜇

𝜓
)
) , 0,0,

𝜇

𝜓
), the third simulations show the stability when 𝐸∗ = (𝑈∗, 𝐼∗, 𝑉∗, 𝐶∗) exist, 

and fourth simulations show the effect of different virus burst size rate. For tumor free condition 𝐸0 =

(0,0,0,
𝜇

𝜓
), we use parameters values: 𝑟 = 0.1, 𝐾 = 2139, 𝛽 = 0.01, 𝛼 = 0.5, 𝛿𝑢 = 50, 𝐾𝑐 = 10000, 

𝛿 = 0.5, 𝛿𝑖 = 60, 𝑏 = 0.5, 𝛾 = 0.1,  𝜇 = 150, 𝜓 = 4.17. Based on previous analysis, since 𝑟 = 0.1 <

0.1792114696 =
𝛿𝑈

𝝁

𝝍

𝐾𝐶+
𝝁

𝝍

 then 𝐸0 = (0, 0,0,36) is locally asymptotically stable as shown in Figure 1. 

The result of the numerical simulation provided in Figure 1 shows that the initial condition converges 

to the equilibrium point 𝐸0. 
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The second simulation is executed to show the local stability of equilibrium point 𝐸1 =

(𝐾 (1 −
𝛿𝑢

𝜇

𝜓

𝑟(𝐾𝑐+
𝜇

𝜓
)
) , 0,0,

𝜇

𝜓
). The simulation is made using a set of parameters as follow : 𝑟 = 0.206, 

𝐾 = 2000, 𝛽 = 0.712, 𝛼 = 0.5,  𝛿𝑢 = 40, 𝐾𝑐 = 10000, 𝛿 = 1, 𝛿𝑖 = 60, 𝑏 = 1, 𝛾 = 0.001, 𝜇 =

203, 𝜓 = 4.17. In this case, since 𝛾 = 0.001 > 0.00068483 = (
𝑏𝛿𝑐

(𝑎−𝛿)
+ 1) then 𝐸1 is locally 

asymptotically stable as shown in Figure 2. The result of the numerical simulation provided in Figure 

2 shows that the initial condition converges to the equilibrium point  𝐸1 = (119,0,0,49).  

The third simulation is conducted to investigate the stability of 𝐸∗ = (𝑈∗, 𝐼∗, 𝑉∗, 𝐶∗). Based on the 

previous analysis, we get these parameters as a condition for the existence of an endemic equilibrium 

point. We use the following parameters : 𝑟 = 1.8, 𝐾 = 10000, 𝛽 = 0.00085, 𝛼 = 0.5, 𝛿𝑢 = 0.2, 

𝐾c = 10000, 𝛿 = 0.2, 𝛿𝑖 = 0.8, 𝛾 = 0.0001, 𝑏 = 1.2,  𝜇 = 20,  𝜓 = 0.14. An endemic equilibrium 

point 𝐸∗ = (8459, 1319, 379000,143) is locally asymptotically stable since it satisfies the Routh-

Hurwitz criterion where 𝑚1 = 0.02956768848 > 0, 𝑚3 = 0.000005016214500 > 0, 𝑚1𝑚2 −
𝑚3 = 0.01078110345 > 0. The result of the numerical simulation provided in Figure 3 shows that 

the solution converges to the equilibrium point 𝐸∗ = (8459, 1319, 379000,143).  

The last simulation is executed to show the effect of different burst size. We use different 

parameter value for 𝑏 = 1.2, 𝑏 = 1.5 and 𝑏 = 1.7. The result of the numerical simulation provided in 

Figure 4. The Figure shows that increasing virus burst size causes the densities of uninfected cells 

decrease, whereas the densities of infected cells will increase.  

 
Figure 1. The stability of equilibrium point 𝐸0. The initial condition (a) 𝑈(0) = 100, (b) 𝐼(0) = 10, 

(c) 𝑉(0) = 10, (d)  𝐶(0) = 30. 

(a) (b) 

(c) (d) 
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Figure 2. The stability of equilibrium point 𝐸1. The initial condition (a) 𝑈(0) = 100, (b) 𝐼(0) = 10, 

(c) 𝑉(0) = 10, (d) 𝐶(0) = 30. 

 

Figure 3. The stability of equilibrium point 𝐸∗. The initial condition (a) 𝑈(0) = 600, (b) 𝐼(0) =
1310, (c) 𝑉(0) = 370000, (d) 𝐶(0) = 142. 

 

(a) (b) 

(c) (d) 

(a) (b) 

(c) (d) 
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Figure 4. The effect of different value of virus burst size. 

5.  Conclusion 

This paper introduces a new mathematical model of tumor therapy with oncolytic virus and 

chemotherapy with a saturated rate. The dynamical analysis shows that the model has three 

equilibrium points, namely tumor-free equilibrium, virus free equilibrium, and an endemic equilibrium 

point. The tumor-free equilibrium point and virus-free is locally asymptotically stable under certain 

condition, and an endemic equilibrium point is locally asymptotically stable if it satisfies Routh-

Hurwitz criterion. From the simulation, it is also found that increasing the burst size of virus will 

decrease density of tumor.  
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