
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Using Regularized Softmax Regression in the GNSS/INS Integrated
Navigation System with Nonholonomic Constraints
To cite this article: Linlin Zhao and Haiyang Quan 2019 IOP Conf. Ser.: Mater. Sci. Eng. 538 012058

 

View the article online for updates and enhancements.

This content was downloaded from IP address 120.234.63.196 on 18/10/2019 at 06:07

https://doi.org/10.1088/1757-899X/538/1/012058


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICMMME2019

IOP Conf. Series: Materials Science and Engineering 538 (2019) 012058

IOP Publishing

doi:10.1088/1757-899X/538/1/012058

1

 

 

 

 

 

 

Using Regularized Softmax Regression in the GNSS/INS 

Integrated Navigation System with Nonholonomic Constraints 

Linlin Zhao, Haiyang Quan 

Beijing Microelectronics Technology Institute, Beijing, China 

 

Corresponding author’s e-mail:elijaheslyz@buaa.edu.cn 

Abstract. The integration of global navigation satellite system (GNSS) and Inertial navigation 

system (INS) is widely implemented in land-vehicle navigation applications. However, the 

satellite signal is vulnerable in some special urban scenarios, consequently errors in terms of 

position, velocity and attitude grow rapidly in stand-alone mode especially for low-cost 

MEMS-based INS. In the conventional tight combination navigation schemes, system works 

on predicting model during the GNSS signal outage and the positioning accuracy is determined 

by the precision of the inertial navigation. Besides the lack of observation makes the estimate 

of inertial navigation error with GNSS information less reliable due to the satellite signal loss. 

In this paper, an improved non-holonomic constraints (NHC) method based on regularized 

softmax regression is proposed to enhance navigation precision when the number of visible 

satellite is insufficient. The velocity constraint condition is applied to simplify the system 

calculating equations of MEMS-based INS. Furthermore, a regularization softmax regression 

model based on the collected data is trained to recognize the vehicle motion pattern so as to 

realize deeper constraints. Simulation and field-test results indicate that the method is 

beneficial to raise the precision of low-cost GNSS/INS integrated navigation receiver by 

efficiently reduce the navigation errors. 

1.  Introduction 

Integrated navigation receiver-chips based on global navigation satellite system (GNSS) and Inertial 

navigation system (INS) have been widely applied in various fields such as land-vehicle navigation 

(LVN) [1]. The integration of GNSS and INS takes advantage of the both navigation methods since an 

INS is self-contained and able to provide full six degree-of-freedom solutions with high update rates 

which covers the shortage of satellite navigation on anti-jamming. Micro-electro-mechanical systems 

(MEMS) inertial sensors are predominant in power consumption, weight and cost which quitely meet 

the specifications and requirements for INS. However, the widespread uses of MEMS inertial systems 

that are of low-cost and low-grade inertial sensors outputs are characterized by high noise and large 

indeterminacy and consequently this reduction of cost has led to drop in accuracy as a whole [2-3]. 

Therefore, an INS that uses low-cost inertial sensors only can be used for standalone navigation for a 

very limited time period. Even though the system can estimate the sensor biases, the position error 

growth during the GNSS-signal outages is substantial and the navigation solution soon becomes 

useless.  
Some research suggests that the navigation precision could be improved by raising hardware structure 

or importing other sensors data [4-6]. A preferable performance system can be realized, whereas the 

cost and systematic complexity increase as well.  A short discussion about various information fusion 
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strategies is proposed in [7]. In most integrated schemes, the GNSS is considered to be an accurate 

reference with which to correct for the systematic errors of the inertial sensors. Admitting that an 

integrated navigation system can work in GNSS-denied environments, the lack of observation makes 

the estimate of inertial navigation error with GNSS information less reliable. It is valuable to introduce 

specific auxiliary information without adding extra hardware costs. For LVN applications, Non-

Holonomic Constraints (NHC) is one of the most common types of auxiliary information. A detailed 

observability analysis of the contributions of the NHC from the perspective of observability is given in 

[8], which provides a deeper insight and shows how the NHC improves the navigation solutions in a 

loosely coupled GPS-aid INS. Niu [9] implemented the NHC in land-vehicle navigation which could 

significantly improve the heading accuracy. But it would barely contribute when the speed gets low. 

Shin [10] proposed a method to constrain the heading drift which is called Zero Integrate Heading 

Rate. The current approaches still need deeper constrains to cover the various situations. 

In this paper, a tightly integrated navigation system with NHC based on low-cost INS and GNSS 

receiver is proposed. The equations of INS pseudo-range and pseudo-range rate are described in detail. 

The NHC condition is also imported to the combination filter for the LVN applications. Further, we 

implemented regularized softmax regression to recognize the vehicle motion mode so that deeper 

constrains could be realized. Simulation analysis verified the effectiveness of our method and field-test 

results showed a significant improvement on the performance during the satellite signal outage. 

2.  Method 

2.1.  Overall Design of the Tightly-Coupled Scheme 

A succinct expression of the integrated navigation scheme is described in Fig.1. A relative distance to 

satellite that can be considered as the pseudo-range and pseudo-range rate of INS is calculated with the 

inertial navigation outcome and the satellite ephemeris information. The pseudo-range and pseudo-

range rate offset between GNSS measurement and INS are implemented as the input factors of the 

extended Kalman filter [11]. It is mentioned that data pre-processing and initial alignment steps are not 

involved in the discussion of this paper which cannot be considered as vacancy. 

 
Figure1. The overall scheme of GNSS/INS 

 

A 11-state vector which updates by the tightly-coupled INS/GNSS integrated filter based on the 

pseudo-range and pseudo-range rate is defined in (1). 

                                                                                 (1) 

Where the subscripts e, n and u represent the three axis of geocentric coordinate system and 𝜆, l and h 

represent the position of longitude, latitude and altitude.  𝜙 represents error-angle of platform and 

errors of velocity, clock and frequency are considered as ∆𝑣, 𝛿𝑡𝑢 and 𝛿𝑡𝑟𝑢. 
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2.2.  Equations of pseudo-range and pseudo-range rate 

The position measurement from INS can be assumed as (𝒙𝑰 𝒚𝑰 𝒛𝑰)𝑻and accurate satellite position can 

be extracted from the ephemeris information as (𝒙𝒔 𝒚𝒔 𝒛𝒔)𝑻. The pseudo-range measurement from 

GNSS receiver is defined as 𝝆𝑮. The real distance from INS to GNSS satellites can be described as (2). 

            𝑟𝑗 =  [(𝑥𝑠𝑗 − 𝑥)
2

+  (𝑦𝑠𝑗 − 𝑦)
2 

+  (𝑧𝑠𝑗 − 𝑧)
2

]
1
2
                                        (2) 

The factual coordinate orientation is set as (x y z)Tand Taylor series expansion in the measurement 

from INS can be defined as (3) and the first order is reserved. Therefore, we can express the pseudo-

range with position error and rj as (5). 

   𝑟𝑗 =  [(𝑥𝑠𝑗 − 𝑥𝐼)
2

+  (𝑦𝑠𝑗 − 𝑦𝐼)
2 

+  (𝑧𝑠𝑗 − 𝑧𝐼)
2

]
1
2

− 𝐻                                  (3) 

                           𝐻 =  
∂𝑟𝑗

𝜕𝑥
𝛿𝑥 +

∂𝑟𝑗

𝜕𝑦
𝛿𝑦 +

∂𝑟𝑗

𝜕𝑧
𝛿𝑧                                                         (4) 

                        𝜌𝐼𝑗 =  𝑟𝑗 − 𝑒𝑗1𝛿𝑥 − 𝑒𝑗2𝛿𝑦 − 𝑒𝑗3𝛿𝑧                                                   (5) 

𝜕𝜌𝑗

𝜕𝑥
=  −

𝑥𝑠𝑗−𝑥𝐼

𝑟𝑗
=  −𝑒𝑗1                                                              (6) 

                                 
𝜕𝜌𝑗

𝜕𝑦
=  −

𝑦𝑠𝑗−𝑦𝐼

𝑟𝑗
=  −𝑒𝑗2                                                              (7) 

                                   
𝜕𝜌𝑗

𝜕𝑧
=  −

𝑧𝑠𝑗−𝑦𝐼

𝑟𝑗
=  −𝑒𝑗2                                                               (8) 

Similarly, we can infer the expression of the pseudo-range rate as (11). Prior to that the expressions of 

pseudo-range and pseudo-range rate from GNSS receiver are given in (9) and (10). 𝜐𝜌𝑗 stands for the 

ionospheric errors of satellite j. 

                                      𝜌𝐺𝑗 =  𝑟𝑗 + 𝛿𝑡𝑢 + 𝜐𝜌𝑗                                                                 (9) 

𝜌̇𝐺𝑗 = 𝑒𝑗1(𝑥̇𝑠𝑗 − 𝑥̇) + 𝑒𝑗2(𝑦̇𝑠𝑗 − 𝑦̇) + 𝑒𝑗3(𝑧̇𝑠𝑗 − 𝑧̇)+𝛿𝑡𝑟𝑢 + 𝜐̇𝜌𝑗                                            (10) 

                        𝜌̇𝐼𝑗 =  𝑟̇𝑗 − 𝑒𝑗1𝛿ẋ − 𝑒𝑗2𝛿𝑦̇ − 𝑒𝑗3𝛿𝑧̇                                                   (11) 

The measurement equations of the pseudo-range and pseudo-range rate offset can eventually be 

expressed as follows. 

𝛿𝜌𝑗 = 𝑒𝑗1𝛿𝑥 + 𝑒𝑗2𝛿𝑦 + 𝑒𝑗3𝛿𝑧 + 𝛿𝑡𝑢 + 𝜐𝜌𝑗                                            (12) 

              𝛿𝜌̇𝑗 = 𝑒𝑗1𝛿𝑥̇ + 𝑒𝑗2𝛿𝑦̇ + 𝑒𝑗3𝛿𝑧̇ + 𝛿𝑡𝑟𝑢 + 𝜐̇𝜌𝑗                                       (13) 

The tightly-coupled integrated system then takes the pseudo-range and pseudo-range rate offset as 

observed quantity of the combination filter to update the navigation information. 

2.3.  The Non-Holonomic Costraints for LVN 

When the number of visible satellites is less than four, although the combination filter still works, poor 

navigation results are given due to the lack of measurement. The NHC method is actually used 

commonly in the navigation of land vehicles [9]. For land vehicles in urban environment, it can be 

assumed that the height of carrier will not abruptly change in a short time. Thus, the height before it 

lost a moment can be used as a constraint in the process of GNSS disruption. Besides the NHC makes 

assumptions that in the case of LVN, the velocity of the vehicle in the plane perpendicular to the 

forward direction is almost zero unless the vehicle jumps off the ground or slides on the ground. The 

velocity constraint can be expressed as (14). 
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(𝑣𝑥
𝑏 , 𝑣𝑧

𝑏)
𝑇

~𝑁(0, 𝑅𝑣)                                                               (14) 

where 𝑅𝑣 stands for the perturbation error due to the angle misalignment. For the height constraint, a 

measurement equation is imported to the system as shown in (15). 

ℎ𝐼𝑁𝑆 − ℎ𝑐𝑜𝑛𝑠𝑡 =  𝛿ℎ + 𝜐                                                             (15) 

Where ℎ𝐼𝑁𝑆 and ℎ𝑐𝑜𝑛𝑠𝑡 represent the current solution of INS and previous solution of GNSS in height. 

If ℎ𝑐𝑜𝑛𝑠𝑡  is of highly authenticity, the navigation solution is equal to the normal mode. Otherwise the 

measured values have a deviation of the system. In accordance with the standard Kalman filtering 

equation, the measurement deviation will be imported the state estimation equation to influence the 

filtering solution, the height constraint can cause larger error when ℎ𝑐𝑜𝑛𝑠𝑡 is unreliable. However, for 

land vehicle system, height will not cause large-scale fluctuations and even assuming that the height is 

not accurate anyway, the positioning solutions are still better than that of without constraints. When it 

comes to the velocity constraints, it is equivalent to add another two assumed truth values. Similar to 

the height constraint, if the vehicle is in high dynamic circumstances, such as making a turn or greatly 

changing directions, the estimation error could be worse. Therefore, deeper constraints are still in need 

for the NHC method. 

3.  Improved Method on Deeper Constraints 

3.1.  Reguarized Softmax Regression in Motion Mode Recognition 

As is mentioned that constraints of position and velocity are not reliable when the vehicle changes 

attitude or directions. In other word, the performance of NHC is affected by the motion state. Inertial 

sensors can reflect the movement of the carrier which can determine the current motion state to import 

different constraint conditions according to the output of INS. 

Softmax regression is an extension for logistic regression on the multiple classification problems [12] 

which is a kind of real-time supervised learning model. The softmax function and loss function are 

defined as follows. 

 ℎ𝜃(𝑥(𝑖)) =
1

∑ 𝑒𝑥𝑝(𝜽𝑗
𝑇𝒙(𝑖))3

𝑗=1

[

𝑒𝑥𝑝(𝜽1
𝑇𝒙(𝑖))

𝑒𝑥𝑝(𝜽2
𝑇𝒙(𝑖))

𝑒𝑥𝑝(𝜽3
𝑇𝒙(𝑖))

]                                                                (16) 

  

𝑱(𝜽) = −
𝟏

𝒎
[∑ ∑ {𝒚(𝒊) = 𝐣}𝒍𝒏 (

𝒆𝒙𝒑(𝜽𝒋
𝑻𝒙(𝒊))

∑ 𝒆𝒙𝒑(𝜽𝒏
𝑻𝒙(𝒊))𝟑

𝒏=𝟏
)𝟑

𝒋=𝟏
𝒎
𝒊=𝟏 ] + 𝝀‖𝜽‖𝟐                                      (17) 

Where m stands for the quality of data samples and 𝜽 is the weighting parameter vector. Besides we 

imported 𝜆‖𝜽‖2as the regulation term to avoid parameter redundancy and overfitting. Therefore, the 

loss function is composed of cross entropy and regularization and iteration methods [12] can be 

applied to obtain the optimal solution. For vehicles, general motion states can be summarized as static, 

going straight and turning. A training method based on the actual data is given as Fig.2. 

 

 

Figure 2. Training method 
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The data samples and calibration are generated from real road collections. Since MEMS-INS is fixed 

on the vehicles, the perturbation could form acceleration in the vertical direction in the process of 

driving. Considering the motion characteristics of land vehicles, a practical method of feature selection 

is proposed here. The expressions of feature are shown as follows. 

𝑥1 = ∑ 𝜔𝑛𝑜𝑟𝑚
𝑡𝑘
𝑡𝑖=𝑡𝑘−𝑛 (𝑡𝑖)                                                                  (18) 

𝑥2 = ∑ |𝑎𝑛𝑜𝑟𝑚(𝑡𝑖) − 𝑎𝑛𝑜𝑟𝑚(𝑡𝑖 − 𝑖)|𝑡𝑘
𝑡𝑖=𝑡𝑘−𝑛                                                (19) 

𝑥3 =
1

𝑚
∑ 𝜔𝑧

𝑡𝑘
𝑡𝑖=𝑡𝑘−𝑚 (𝑡𝑖)                                                                   (20) 

where 𝜔𝑛𝑜𝑟𝑚 = √𝜔𝑥
2 + 𝜔𝑦

2  represents the horizontal angular velocity and 

𝑎𝑛𝑜𝑟𝑚 = √𝑎𝑥
𝑏2

+ 𝑎𝑦
𝑏2

+ 𝑎𝑧
𝑏2

 stands for the total acceleration. It is noted that scale normalization is 

essential in the feature scaling. The range of features is unified to [0, 1]. We can get the motion state 

probability by softmax regression based on the current feature vector as shown in Fig.3. 
 

 

Figure 3. The probability distribution by regularized softmax regression 

The motion state can be determined by the optimal probability estimate. The recognition performance 

in a real-road test is shown in Fig.4. The outcomes are consistent with the real motion state in most 

cases. 

 

Figure 4. The motion mode solution by regularized softmax regression 
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3.2.  Deeper Constraints for NHC 

After motion mode judgement, different conditions can be derived as deeper constraints. First of all, 

for the static state, we need to make zero velocity update and modify the pitch and the roll by the 

accelerometer calibration, besides the course angle should remain and the gyroscope zero bias need 

recalculated. The constraints can be described as follows. 

𝒗 = 0                                                                              (21) 

𝜃 = sin−1 (
𝑎𝑦

𝑔
)                                                                      (22) 

∅ = sin−1 (
−𝑎𝑥

√𝑔2−𝑎𝑦
2
)                                                                (23) 

𝐵𝜔 = 𝜔                                                                            (24) 

For a linear motion, the roll can be corrected by the accelerometer of x-axis which is shown in (25). As 

for turning mode, the velocity can be obtained by the relationship between the centripetal acceleration 

and the angular velocity as (26). 

∅ = sin−1 (
−𝑎𝑥

√𝑔 cos 𝜃
)                                                                 (25) 

𝑣 =
𝑎𝑥+𝑔 sin 𝜙𝑐𝑜𝑠𝜃

𝜔𝑧
                                                                    (26) 

4.  Experiments and Discuss 

4.1.  Simulation of the GNSS/INS with Improved NHC 

We have showed the performance of our method on the vehicle movement state recognition. Further, 

we imported the NHC model with regularized softmax regression to a self-developed GNSS/INS 

integrated navigation receiver as shown in fig.5.  

 

Figure 5. The self-developed GNSS/INS 

 

The simulated environment of insufficient visible satellites is generated by the signal simulator. When 

the number of visible satellites is less than four, the system can still work at an excellent precision 

based on the improved NHC.  Fig.7 shows the result error of static simulation.  
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Figure 6. The number of visible satellites 

 
Figure 7. The navigation error in static simulation 

 

Table1. RMSE of location error 

RMSE of location error     Static Simulation 

East position (m) 2.87 

North position (m) 0.95 

Down position (m) 3.37 

East velocity (m/s) 0.02 

North velocity (m/s) 0.01 

Down velocity (m/s) 0.12 

Pitch (°) 0.18 

Roll (°) 0.12 

 
Splendid performance of error limitation could be realized by our method in the static simulation as 

shown in table 1. It's understandable that the improvement on precision is produced by NHC. The 

system will work at zero-velocity updating mode once it is recognized as static. 

4.2.  Field-test Experiment 

A field-test is conducted along the route shown in Fig.8 which is composed of general urban scenario. 

We measured the navigation errors as well and performance of the method can be seen in Fig.9. 
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Figure 8. The road-test route 

 

 

Figure 9. The navigation error of road test 

 

Table2. RMSE of location error 

RMSE of location error Static Simulation 

East position (m) 5.47 

North position (m) 0.75 

Down position (m) 3.89 

East velocity (m/s) 0.98 

North velocity (m/s) 1.12 

Down velocity (m/s) 0.87 

Pitch (°) 1.12 

Roll (°) 1.84 
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As is shown in Fig.9 and table 2, since the practical test is complex, the navigation error is worse than 

static simulation but still proves an acceptable precision. Besides, the down position error is caused by 

the initial alignment. For low-end MEMS based navigation system in LVN applications, we improved 

the navigation performance by using the regularized softmax regression in NHC to realize deeper 

constraints and the effectiveness has been verified. 

5.  Conclusion 

In this paper, we successfully implemented regularized softmax regression into a self-developed 

tightly integrated navigation system with NHC based on a low-cost INS and GNSS receiver.  The 

regularized softmax regression is applied to recognize the vehicle motion mode so that deeper 

constrains could be realized. Detailed analysis and field-test results inferred that our method could 

significantly raise the performance of the system especially during the GNSS outage. 

Acknowledgments 
This study was partially supported by the College specialized research project from Beihang University and 

the navigation research center of Beijing Microelectronics Technology Institute.  

References 

[1] Aboelmagd Noureldin, Tashfeen B Karamat, and Jacques Georgy. Funda- mentals of Inertial 

Navigation, Satellite-Based Positioning and Their Inte- gration. Springer, 2013.      
[2] E. H. Shin and N. El-Sheimy, “Accuracy improvement of low cost INS/GPS for land 

applications,” Department of Geomatics Engineering, University of Calgary, 2001.  

[3] E. H. Shin, “Estimation techniques for low-cost inertial navigation,” UCGE report, 2005.  

[4] Y. Tawk, P. Tome, and C. Botteron, “Implementation and Performance   of a GPS/INS Tightly 

Coupled Assisted PLL Architecture Using MEMS Inertial Sensors,” Sensors 2014, 14, 3768-

3796.  

[5] Yang, Y. “Tightly Coupled MEMS INS/GPS Integration with INS Aided Receiver Tracking 

Loops,” University of Calgary: Calgary, AB, Canada, 2008.   

[6] Niu, X., Hassan, T., Ellum C., and El-Sheimy, N., 2006. Directly Georeferencing Terrestrial 

Imagery using MEMS- based INS/GNSS Integrated Systems. In: XXIII FIG (International 

Federation of Surveyors) Congress, Munich, Germany, 8-13 October 2006. .     
[7] Isaac Skog and Peter Handel, “In-car Positioning and Navigation Technologies—A Survey,” 

IEEE transactions on Intelligent Transportation systems, VOL. 10, NO. 1, March 2009. 

[8] X. Niu, Y. Li, Q. Zhang, Y. Cheng and Ch. Shi, “Observability Analysis of Non-Holonomic 

Constraints for Land-Vehicle Navigation Systems,” Journal of Global Positioning Systems, 

Vol.11, No.1 : 80-88, 2012.  

[9] X. Niu, S. Nassar, and N. El-Sheimy, “An accurate land-vehicle  MEMS IMU/GPS navigation 

system using 3D auxiliary velocity updates,” Navigation, Journal of the Institute of 

Navigation, vol. 54, no. 3, pp. 177–188, 2007. 

[10] Shin, E. H., 2005. Estimation Techniques for Low-Cost Inertial Navigation. PhD Thesis, MMSS 

Research Group, Department of Geomatics Engineering, University of Calgary, Calgary, AB, 

Canada, UCGE Report No. 20219.  

[11] Shin, E. H., 2005. Estimation Techniques for Low-Cost Inertial Navigation. PhD Thesis, MMSS 

Research Group, Department of Geomatics Engineering, University of Calgary, Calgary, AB, 

Canada, UCGE Report No. 20219. 
[12] Pereira F., Mitchell T. and Botvinick M., Machine Learning Classifiers and fMRI: A Tutorial 

Overview. NeuroImage, 2009, 45(1): S199-S209  
 

 

 


