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Abstract. The paper examines effects of long-term international integration in the field of 

electric power industry. An advantage of integration is provoked by the fact that the cost of 

introducing new generation capacities significantly exceeds the cost of new power lines and 

transmission of the energy from existing power station of another country. When countries form 

a coalition, the problem is to allocate the coalition's surplus over its participants. It can be solved 

by notions of cooperative game theory. The present investigation is based on the real data on six 

countries of the Northeast Asian region: Russia, Mongolia, China, North Korea, South Korea 

and Japan. Electric power system is described by the ORIRES model. This model optimizes 

power generation, power flows, and the development of generation capacities and power lines 

of the system. We formulate corresponding cooperative game in characteristic function form, 

and specify the Core and the Shapley value. Effects of international integration are discussed. 

1.  Introduction 

The present study is concerned with a special model of long-term development and operation of 

electrical power systems. This model is called the ORIRES model [1]. ORIRES is a Russian 

abbreviation that means Optimization of Development and Operating Conditions of Electric Power 

Systems. One of its main features is that it takes development of a power system into consideration. This 

way, the model can provide not only the amount of hourly generated electricity and power flows, but 

also the capacities of power generators and transmission lines installed in the system during a particular 

target year. In the original statement, the ORIRES model is a linear programming problem, in which the 

objective function is the total annual system cost. That function is to be minimized subject to balance 

equations and other system-specific constraints. In [2], this model was reformulated for analysis of an 

imperfect electric energy market, where generation companies compete in accordance with the Cournot 

oligopoly model. A solution of such a problem is a Nash equilibrium situation rather than a point that 

minimizes a single objective function. 

This paper focuses on the international power grid interconnections in the Northeast Asian region. 

One of the main issues that rises in this field is an estimation of the economic benefit of such a 

cooperation, possibly with increased attention to usage of renewable energy resources and emissions 

reduction. There have been some papers on grid interconnections in Northeast Asia, see for example [3-

7] and the references therein. The investigations in [5-7] use the ORIRES model as a basic tool for 

computing the integration effect. Note that in [7], the ORIRES is called the ExOMPS model. 
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In addition to estimation of the benefit for the cooperation as a whole, there is a concurrent problem 

of how to divide this benefit among the participants. One approach is based on dual analysis of the 

corresponding linear optimization problem [7]. It suggests to consider the values of the corresponding 

Lagrange multipliers as nodal prices. More detailed description of the dual ORIRES model is presented 

in [8]. However, this approach does not provide any strict way to divide the cost of international lines, 

and this type of costs has to be allocated over the countries according to some additional assumptions. 

In our investigation, we propose to consider the electric power cooperation in the framework of the 

game theory. The cooperative game theory [9] seems to be a natural technique for modelling 

international cooperation. One of the problems that the cooperative game theory can handle is to allocate 

the total benefit of the cooperation over the participants with respect to some optimality condition. We 

examine two classical concepts of the “optimal” allocations: the Core and the Shapley value. An 

advantage of the game theory approach is that it takes interests of the countries into consideration, in 

contrast to optimizing some single aggregate criterion. Moreover, it allows us to divide all the costs of 

the integrated power system including the cost of the lines. In order to define a cooperative game (in 

characteristic function form) we need to establish the minimal total cost of every possible cooperation 

between the given countries. It means that all possible coalitions of a smaller size than the maximal 

cooperation should also be considered. We use the ORIRES model for minimizing the total cost of every 

coalition. 

Our study is based on real data for six countries of Northeast Asia: Russia, Mongolia, China, North 

Korea, South Korea, and Japan. In Russia, we consider two local energy systems in the eastern part of 

the territory: Siberia and Far East. China is also represented by two nodes: North China and Northeast 

China. For other countries, we do not separate nodes in their national energy systems. Analysis is 

performed for the target year 2030. 

The paper is structured as follows. In Section 2 we provide a mathematical description of the 

ORIRES model. Section 3 provides some basic definitions and relations of the cooperative game theory. 

Section 4 contains the main results of the paper. Here we give a procedure that defines the characteristic 

function and, consequently, the corresponding cooperative game. Also here we describe and discuss the 

Core and the Shapley value allocations. In Section 5, we highlight some basic effects of the whole 

cooperation. The final Section 6 summarizes conclusions and directions for future work. 

2.  The ORIRES model 

ORIRES represents a static multi-node linear model that optimizes generation capacities, operating 

powers, capacities of power lines, and power flows. The model distinguishes between the four seasons 

and working days and holidays, and every day is separated into 24 equal periods of time (hours). The 

variables in the model are as follows: the capacities and operating powers of the generation stations, the 

capacities of the transmission lines, and the amounts of electricity transmitted between the nodes via the 

lines. The total annual discounted cost of the system plays the role of the objective function. The cost 

consists of the following components: the power generation cost, the capital cost, and the maintenance 

cost of both the power generators and transmission lines. A node represents a local energy system, which 

contains possibly various types of electrical power plants such as thermal, hydroelectric, pumped 

storage, or nuclear. Every node belongs to a certain country presented in the system. For mathematical 

formulation of the ORIRES model, let us introduce notations for the parameters and variables. 

The parameters defined by exogenous input data are as follows. 𝐽 is the set of the nodes in the system 

(Russia – Siberia, Russia – Far East, Mongolia, North China, Northeast China, North Korea, South 

Korea, Japan), 𝐼 is the set of the generation types (hydro, thermal on gas, thermal on coal, pumped 

storage, nuclear, and others), 𝑆 is the set of the seasons (winter, spring, summer, fall), 𝑇 is the set of the 

hours (𝑇 =  {1, … ,24}), 𝑇∗(𝑠) is the set of the peak hours in season 𝑠 (for winter and summer only) 

such that 

*('winter ') {8,9,11}, *(' ') {4,5,6}T T summer   
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𝜏𝑠
𝑤 is the number of working days in season 𝑠, 𝜏𝑠

ℎ is the number of holidays in season 𝑠, 𝑐𝑗𝑖 is the unit 

cost of generation type 𝑖 in node 𝑗, 𝑓 is the rate of return, 𝛾𝑗𝑖 is the unit cost of capacities of type 𝑖 in 

node 𝑗, 𝑧𝑗𝑖
0  is the already installed capacities of type 𝑖 in node 𝑗, 𝑧𝑗̅𝑖 is the maximal capacity of type 𝑖 that 

can be installed in node 𝑗, 𝑘𝑗𝑖 is the unit costs for maintenance of capacities of type 𝑖 in node 𝑗, 𝜌𝑗𝑗′  is 

the unit cost of installing a line between nodes 𝑗 and 𝑗′, 𝑣𝑗𝑗′
0  is the existing line capacity between nodes 

𝑗 and 𝑗′, 𝑣̅𝑗𝑗′  is the maximal capacity of the line that can be installed between nodes 𝑗 and 𝑗′, 𝑏𝑗𝑗′  is the 

unit cost of the line maintenance between nodes 𝑗 and 𝑗′, 𝐴 = (𝑎𝑗𝑗′)
𝑗,𝑗′∈𝐽

 is the symmetric matrix of 

connections (𝑎𝑗𝑗′ = 1 if the line between nodes 𝑗 and 𝑗′ exists or can be potentially installed and 𝑎𝑗𝑗′ =

0 otherwise), 𝛿𝑗𝑗′  is the loss rate of power transmitting from 𝑗 to 𝑗′, 𝑑𝑗𝑠𝑡
𝑤  is the demand in node 𝑗 in 

season 𝑠 at hour 𝑡 on a working day, 𝑑𝑗𝑠𝑡
ℎ  is the demand in node 𝑗 in season 𝑠 at hour 𝑡 on a holiday, 𝑟𝑗𝑠𝑡 

is the power reserve required in node 𝑗 in season 𝑠 at hour 𝑡, 𝛼𝑗𝑖𝑠 is the rate of the lower operating limit 

of generation type 𝑖 in node 𝑗 in season 𝑠, 𝛽𝑗𝑖𝑠 is the rate of the upper operating limit of generation type 

𝑖 in node 𝑗 in season 𝑠, 𝐽𝑆 is the set of the nodes with a constraint on season output of hydro power 

plants, 𝐽𝑌 is the set of the nodes with a constraint on annual output of hydro power plants, 𝐻𝑗𝑠
𝑆  is the 

maximal seasonal number of operating hours of hydro power plants in node 𝑗 ∈ 𝐽𝑆 in season 𝑠, 𝐻𝑗
𝑌 is the 

maximal annual number of operating hours of hydro power plants in node 𝑗 ∈ 𝐽𝑌, 𝐺𝑗𝑠 is the maximal 

charge rate of the pumped storage power plants in node 𝑗 in season 𝑠, 𝑞𝑗 is the efficiency rate of the 

pumped storage power plants in node 𝑗, 𝐻𝑗
𝐷 is the maximal daily number of operating hours of the  

pumped storage power plants in node 𝑗. 

The variables of the model are the following. 𝑥𝑗𝑖𝑠𝑡
𝑤  is the amount of generated electricity of type 𝑖 in 

node 𝑗 in season 𝑠 at hour 𝑡 on a working day, 𝑥𝑗𝑖𝑠𝑡
ℎ  is the amount of generated electricity of type 𝑖 in 

node 𝑗 in season 𝑠 at hour 𝑡 on a holiday, 𝑧𝑗𝑖 is the capacity of type 𝑖 in node 𝑗, 𝑣𝑗𝑗′ is the capacity of the 

line between nodes 𝑗 and 𝑗′, 𝑦𝑗𝑗′𝑠𝑡
𝑤  is the power flow from node 𝑗 to node 𝑗′ in season 𝑠 at hour 𝑡 on a 

working day, 𝑦𝑗𝑗′𝑠𝑡
ℎ  is the power flow from node 𝑗 to node 𝑗′ in season 𝑠 at hour 𝑡 on a holiday, 𝑦̃𝑗𝑗′𝑠𝑡 is 

the power flow under emergency conditions in the case of a failure at a peak hour 𝑡 ∈ 𝑇∗(𝑠) from node 

𝑗 to node 𝑗′ in season 𝑠, 𝑢𝑗𝑠𝑡
𝑤  is the amount of charge of the pumped storage plants in node 𝑗 in season 𝑠 

at hour 𝑡 on a working day, 𝑢𝑗𝑠𝑡
ℎ  is the amount of charge of the pumped storage plants in node 𝑗 in season 

𝑠 at hour 𝑡 on a holiday. For convenience, let us gather all the variables into a single vector: 

 , , , , , , , ,w h w h w h

jist jist ji jj jj st jj st jj st jst jstX x x z v y y y u u    . 

For a particular set of countries, let set 𝐽  be the set of all nodes located in these countries. For a given 

𝐽, the ORIRES model is presented by the following linear programming problem: 

 w w h h

s ji jist s ji jist

j J i I s S t T j J i I s S t T

c x c x 
       

   (1) 

  0

ji ji ji ji ji ji

j J i I j J i I

f z z k z 
   

     (2) 

  0

' ' ' ' ' '

'

min,jj jj jj jj jj jj
X

j J j J j J j J

f v v b v 
   

      (3) 

 ΩX  , (4) 

where set Ω will be specified further. In the objective function, (1) represents the total annual operating 

cost, while (2) is the cost of the development and maintenance of the generation capacities, and the 

summation in (3) provides the cost of the development and maintenance of the power lines. 

The feasible set Ω is determined by the following linear constraints.  
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The balance equations for every node at every hour on working days and holidays: 

   ' ' '1 ,    , , ,w w w w w

jist jj j jst j j jj st jst jst

i I j J

x a y y u d j J s S t T






          (5) 

   ' ' '1 ,    , , .h h h h h

jist jj j jst j j jj st jst jst

i I j J

x a y y u d j J s S t T






          (6) 

The constraints on operating power for every type of generation: 

 ,    , , , ,w

jis ji jist jis jiz x z j J i I s S t T        (7) 

 ,    , , , .h

jis ji jist jis jiz x z j J i I s S t T        (8) 

The feasibility constraints on development of generation capacities and power lines 

 
0 ,    , ,ji ji jiz z z j J i I      

 
0

' ,    , .jj jj jjv v v j J j J      

The constraints on generation capacities with respect to emergency situations in the case of failure 

during peak hours 

       *

' ' ' '1 1 ,    , , .w

ji jj j jst j j jj st jst jst

i I j J

z a y y d r j J s S t T s
 

          (9) 

The feasibility constraints on flows and emergency flows 

 ' ,    , , , ,w

jj st jjy v j J j J s S t T     (10) 

 ' ,    , , , ,h

jj st jjy v j J j J s S t T     (11) 

  *

' ,    , , , .jj st jjy v j J j J s S t T s      (12) 

The constraints on the annual and seasonal outputs of hydroelectric plants: 

   ,    , ,w w h h S

jst jist jst jist js ji

t T

x x H z j J s S 


     

   ,    ,w w h h Y

jst jist jst jist j ji

s S t T

x x H z j J 
 

    

where index 𝑖 indicates individual hydroelectric plants only.  

The constraints on the maximal charge of pumped storage power plants: 

 ,    , , ,w

jst js jiu G z j J s S t T     

 ,    , , .h

jst js jiu G z j J s S t T     

The constraints on the output of pumped storage power plants with respect to the efficiency of 

discharge: 

 ,    , ,w w

jist j jst

t T t T

x q u j J s S
 

     
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 ,    , ,h h

jist j jst

t T t T

x q u j J s S
 

     

and with respect to the maximal number of operating hours in a day: 

 ,    , ,w D

jist j ji

t T

x H z j J s S


    

 ,    , ,h D

jist j ji

t T

x H z j J s S


    

where 𝑖 indicates pumped storage power plants only. 

Balance equations (5), (6) equalize the total amount of electricity available in a node with the demand 

in that node. Available power is formed by the generation in the node plus incoming flows from the 

adjacent nodes minus outgoing power transmitted to other nodes and minus the power spent for charging 

the pumped storage plants of this node. Incoming flows always enter with some power loss defined by 

the coefficients 𝛿𝑗𝑗′. Values of 𝛿𝑗𝑗′ are usually from 2 to 7%. The feasibility constraints (7), (8) on 

operating powers set a limit for the amount of electricity that can be generated depending on the installed 

capacity and the operating limit rates. It is assumed that plants are always in operational condition.  For 

a majority of generation types, it implies that the lower power output may not be equal to zero. The 

balance equations (9) ensure the reliability of the system. These relations claim that, with some reserve 

𝑟𝑗𝑠𝑡, the capacities of the system are able to meet the demand in the peak hours. Coefficients 𝑟𝑗𝑠𝑡 are 

usually set to be 20-22%. According to (10)-(12), the power flow at every hour is bounded from above 

by the corresponding power line capacity. 

With the given data on the six countries of the Northeast Asian region, the problem (1)-(4) has 42000 

variables and 56000 constraints in the case of the whole cooperation, when 𝐽 consists of all nodes of all 

countries under consideration. 

3.  Some basic notions of the cooperative game theory 

In a cooperative game [9], players may form coalitions. It would be natural to expect that such 

integrations benefit their participants. We would think that if there is a lack of energy, grid development 

and transmission of electricity from existing power plants of another country would be less expensive 

than expansion of the country’s own capacities. Indeed, real data indicate that costs of installing new 

generation capacities significantly exceed costs of installing new power lines and transmitting energy. 

More precisely, power line investments lie in the interval of $180-950 per kW, whereas investments to 

generation capacities reach $800-8500 per kW. The most costly investments to both generation and lines 

relate to Japan due to geographical reasons. Thus, any power grid coalition results in non-increasing of 

the total cost. Since a coalition acts as a single player, the coalition’s surplus should be allocated over 

its participants. Let us discuss reasonable methods of allocating the surplus over a coalition.  

Let 𝑁 = {1, 2, … , 𝑛} be the set of players. Every nonempty subset 𝐾 ⊆ 𝑁 is called a coalition. Set 𝑁 

is referred to as the grand coalition. The characteristic function 𝑣: { 𝐾 ∣ 𝐾 ⊆  𝑁 } → ℝ is a function that 

assigns to every coalition 𝐾 ⊆ 𝑁 an attainable payoff 𝑣(𝐾) such that 𝑣(∅) = 0. Normally, 𝑣 satisfies a 

superadditivity condition 

        for every  , , .v K v T v K T K N T N K T        (13) 

Condition (13) is met for an electric power integration due to the properties discussed above. The 

pair (𝑁, 𝑣) is called a cooperative game (in characteristic function form). An imputation is a vector 𝑥 ∈
ℝ𝑛 satisfying the efficiency condition 

  i

i N

x v N


  (14) 

and the individual rationality condition 
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     for every  .ix v i i N   (15) 

Imputation 𝑥 dominates another imputation, not equal to x, if there exists a nonempty coalition 𝐾 ⊂
𝑁 such that 

   ,i

i K

x v K


  

   for every i ix y i K  . 

If 𝑣 is superadditive, then the Core is the set of undominated imputations [9]. An imputation 𝑥 is an 

element of the Core if and only if 

    for every  .i

i K

x v K K N


   (16) 

Obviously, the Core is a closed convex set determined by linear inequalities. The feature of a Core 

allocation is that it discourages any participant or a group of participants to leave the grand coalition and 

form smaller coalitions. For a Core allocation, smaller coalitions do not provide any additional benefit. 

Note that in general, a Core may turn out to be an empty set. 

The Shapley value is an imputation defined as 

 
   

     
:

1 ! !
,    .

!
i

K i K N

K n K
x v K v K i i N

n 

 
   ‚  (17) 

Here |𝐾| denotes the number of elements in set 𝐾. The Shapley value is a unique imputation that 

always exists for every cooperative game [9]. Informally, the Shapley value may be referred to as a 

“fair” allocation, since it considers the marginal contribution of a participant to every feasible coalition. 

Both the Core and the Shapley values have a combinatorial nature since one needs to enumerate all 

possible coalitions in order to define these imputations. 

4.  Main results 

In order to define a cooperative game, we need to specify the characteristic function value 𝑣(𝐾) for 

every coalition 𝐾. Value 𝑣(𝐾) represents the maximal payoff that may be guaranteed for 𝐾. As we 

mentioned before, building up capacities is significantly more expensive than generating and 

transmitting electricity. Hence, the guaranteed payoff of a coalition is defined by the coalition’s minimal 

cost in the case of its isolated functioning. In that way, countries within a coalition can transmit energy 

to each other, but they cannot receive electricity from countries that are not in the coalition. It is assumed 

that every coalition is feasible. Consequently, we need to solve (2|𝑁| − 1) linear programming problems 

(1)-(4) of various dimensions to specify 𝑣(𝐾) for every coalition 𝐾 ⊆ 𝑁. Since our basic model is 

formulated as a cost minimization problem, we consider 𝑣(𝐾) as the loss of coalition 𝐾, and  imputation 

𝑥 allocates the coalition’s cost rather than its profit or surplus. In this case, the corresponding changes 

in the inequalities (13), (15), (16) should be made. 

So, 𝑣(𝐾) is the optimal value of the objective (1)-(3), where 𝐽 is the set of all nodes belonging to the 

countries of coalition 𝐾. On the other hand, for convenience, we can solve the problem (1)-(4) with all 

nodes included in 𝐽 along with the assumption that coalitions 𝐾 and 𝑁 ∖ 𝐾 are isolated from each other. 

Isolation of coalitions is provided by the corresponding changes in the matrix 𝐴. A solution of this 

problem implies values 𝑣(𝐾) and 𝑣(𝑁 ∖ 𝐾) simultaneously. Since |𝑁| = 6, the game has 63 coalitions 

including the grand coalition 𝑁 and the singleton coalitions. Thus, one needs to solve 
2|𝑁|

2
= 32 full-

dimensional problems (1)-(4) providing the following 32 pairs: 

                   , ,  1 , 1 ,  1, 2 , 1, 2 , v N v v N v v N v ‚ ‚  
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We have solved these 32 linear programming problems by IBM ILOG CPLEX solver [10]. 

For our cooperative game, the Core (14)-(16) is a non-empty set with infinite number of elements. 

This case gives us an opportunity to optimize over the Core imputations with some additional criterion, 

what may be used in further investigation of the power integration problem. Assign the numbers 1 to 6 

to Russia, Mongolia, China, North Korea, South Korea, and Japan respectively. The Core has the 

following form: 

 1 2 3 4 5 6 333001,x x x x x x       

 1 2 3 4 5 203847,x x x x x      

 1 2 3 4 6 286887,x x x x x      

 1 2 3 5 6 338509,x x x x x      

… 

 4 5046,x   

 5 57153,x   

 6 138441.x   

The right hand sides in these relations are exactly the values of characteristic function expressed in 

millions of dollars. 

Let us give some examples of imputations belonging to the Core. Since the Core is a polyhedron, we 

suggest to compute the Chebyshev point of the Core first. The Chebyshev point is the center of the 

maximal sphere that can be inscribed into the polyhedron. Informally, this center is equidistant from the 

linear constraints. Table 1 describes the Chebyshev center of the Core. The column “Isolated” represents 

the minimal costs for a country when it does not cooperate with any of the other countries. The last two 

columns reflect the change in costs when countries cooperate in the grand coalition with the given 

imputation, as compared to isolated functioning. 

Table 1. The Chebyshev center of the Core. 

 Imputation (costs) Isolated Integration effect 

 $ million % $ million % $ million 

Russia    7353 2.21 7591 -3.14 -239 

Mongolia  670 0.20 909 -26.26 -239 

China     135301 40.63 147757 -8.43 -12455 

North Korea    0 0 5047 -100.00 -5047 

South Korea    54239 16.29 57153 -5.10 -2915 

Japan     135438 40.67 138441 -2.17 -3004 

Total  333001 100.00 356899 -6.70 -23898 

It is worth to note that North Korea bears no cost in the Chebyshev point. Moreover, the relative 

integration effects (the 5th column) differ dramatically. Instead, we have generated 30 random points 

from the Core and have chosen an imputation among them in such a way that the relative integration 

effects are approximately equal. This imputation is presented in table 2. 

Table 2. An element of the Core. 

 Imputation(costs) Isolated Integration effect 

 $ million % $ million % $ million 

Russia 6853 2.06 7591 -9.72 -738 

Mongolia 837 0.25 909 -7.95 -72 

China 135801 40.78 147757 -8.09 -11956 

North Korea 4662 1.40 5047 -7.62 -385 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 062003

IOP Publishing

doi:10.1088/1757-899X/537/6/062003

8

 

 

 

 

 

 

South Korea 52574 15.79 57153 -8.01 -4580 

Japan 132274 39.72 138441 -4.45 -6167 

Total 333001 100.00 356899 -6.70 -23898 

It is noticeable that for our problem the Shapley value (17) turns out to be an element of the Core. 

Consequently, it inherits the features of the Core imputations in addition to its own properties which 

were briefly discussed above. Information on the Shapley value is gathered in table 3. 

Table 3. The Shapley value. 

 Imputation(costs) Isolated Integration effect 

 $ million % $ million % $ million 

Russia 3867 1.16 7591 -49.07 -3725 

Mongolia 350 0.11 909 -61.46 -559 

China 141328 42.44 147757 -4.35 -6429 

North Korea 527 0.16 5047 -89.56 -4520 

South Korea 52578 15.79 57153 -8.01 -4575 

Japan 134351 40.35 138441 -2.95 -4090 

Total  333001 100.00 356899 -6.70 -23898 

Tables 1, 2, and 3 show that imputations provide decreasing of cost for each country comparing with 

isolated playing. In other words, the individual rationality condition (15) holds. 

5.  Effects of the grand coalition 

In this section, we will briefly discuss effects of the grand coalition as compared to the isolated operation. 

These results do not depend on a particular imputation and characterize the changes that occur in the 

integrated power system when the national power systems cooperate in the grand coalition. The effects 

are presented for the individual countries as well as for the whole coalition.  

The capacity effect describes the amount of new generation capacities introduced in the system (see 

table 4). The second column of the table contains initial capacities, the third and the forth ones show the 

introduced capacities for the isolated case, and the last two columns relate to the grand coalition. 

Table 4. New generation capacities. 

 Initial Isolated work Grand coalition 

 GW Δ𝑧, GW Δ𝑧, % Δ𝑧, GW Δ𝑧, % 

Russia 71.0 3.9 5.56 4.9 6.96 

Mongolia 1.9 2.2 113.49 0 0 

China 449.0 301.9 67.25 264.3 58.86 

North Korea 10.9 8.1 74.31 0.3 2.71 

South Korea 127.7 22.1 17.29 21.3 16.67 

Japan 210.1 30.4 14.48 10.9 5.21 

Total  870.6 368.7 42.35 301.7 34.66 

 

Note that the grand coalition introduces less amount of new capacities than the isolated countries do 

in total. Mongolia, when in the grand coalition, does not install any new capacities at all receiving power 

from other countries in the case of a power shortage. 

When countries are isolated, the capacities of the international power lines are equal to zero. In the 

case of the grand coalition, 85.9 GW of new power lines appear in the system. It totals to $39,278 

million. Table 5 presents the line capacities between the possible pairs of the countries. A dash means 

that no line between those countries is allowed (𝑎𝑗𝑗′ = 0). 
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Table 5. Power lines in the grand coalition (GW). 

 Russia Mongolia China N. Korea S. Korea Japan 

Russia  9.3 16.3 1.5 – 5.3 

Mongolia 9.3  8.5 – – – 

China 16.3 8.5  15 – – 

North Korea 1.5 – 15  15 – 

South Korea – – – 15  15 

Japan 5.3 – – – 15  

In table 6, we show the annual amount of the generated power. Table 7 contains the values of the 

annual operating costs (the fuel effect). The last column in tables 6, 7 shows the differences between the 

amount of power generated within the grand coalition and in the course of isolated operation. The bottom 

line of table 6 indicates that more energy were generated in the coalition than during the isolated work. 

This is caused by the transmission losses defined by coefficients 𝛿𝑗𝑗′. China and Russia are the only 

countries that have increased the annual power output in the coalition. Also, it is worth to note that Japan 

is the largest power importer due to its high demand in electricity. The lack of initial generation 

capacities results in a power shortage. This fact along with the high capital investments in Japan explains 

the large total cost for this country. China plays the role of the largest power exporter in the coalition. 

Table 6. Annual power generation. 

 Isolated work, GWh Grand coalition, GWh Δ, % 

Russia 421816 434810 3.08 

Mongolia 19632 13304 -32.23 

China 3845569 4016314 4.44 

North Korea 78062 50030 -35.91 

South Korea 792851 786193 -0.84 

Japan 1139897 1032821 -9.39 

Total  6297826 6333473 0.57 

Table 7. Annual operating costs (fuel effect). 

 Isolated work, 

$ million 

Grand coalition, 

$ million 
Δ, % 

Russia 4911 5409 10.14 

Mongolia 436 305 -30.10 

China 82988 89085 7.35 

North Korea 2782 1279 -54.01 

South Korea 36734 36272 -1.26 

Japan 88171 74359 -16.18 

Total  216569 206710 -4.55 

6.  Conclusion 

We considered the power grid interconnections in the Northeast Asian region. The countries under 

consideration were Russia, Mongolia, China, North Korea, South Korea, and Japan. Since the problem 

of dividing the cooperation benefit between countries gains not much attention in the literature, we 

proposed a game theory approach to allocation of the total surplus of the coalition over the participants. 

The study is entirely based on the ORIRES model. This model accounts for the development of 

generation capacities and transmission lines in the year 2030. The corresponding cooperative game in 

characteristic function form was determined. In order to specify the characteristic function we solved 

32 linear programming problems with 42000 variables and 56000 constraints. We specified two 

allocation methods satisfying some reasonable conditions: the Core and the Shapley value. The Core 

turned out to be a nonempty set with infinite number of elements. This fact inspires our future work. It 
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is worth to suggest and examine some additional conditions for a Core allocation. For example, an 

allocation may be chosen as a solution of an optimization problem with an expertly defined objective 

function over the Core. However, such a problem would be valid only in the case of a nonempty Core. 

If the Core is empty for some input data, one may use the Shapley value as an allocation, since this 

imputation always exists. 
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