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Abstract. Data-driven prediction systems used in epidemiological studies are still 

unsatisfactory from a practical point of view. Different pitfalls should be considered while 

transferring technologies from research to practice. The proposed k-Nearest Neighbors 

approach is designed to make disease-related predictions in a more holistic manner: we detect 

cases of novelty among unobserved subjects to identify situations when model predictions are 

not reasonably valid. Moreover, it copes with overlapping classes, finds new examples which 

cannot be labelled with the high confidence and reveals healthy subjects in the training data 

who might be at risk. Additionally, variable selection is built-in to select relevant predictors. 

The approach was applied to predict cardiovascular diseases based on the data collected within 

an ongoing follow-up study undertaken in Eastern Finland. According to the experimental 

results, our proposal allows increasing the accuracy of predictions made.  

1.  Introduction 

Predictive modeling as an essential part of preventive medicine has recently evolved into the main 

technological ingredient of a novel up-and-coming field called precision public health [1]. This field 

involves advanced data-driven methods and applies them to prevent diseases, understand risks better 

and promote health [2, 3]. Due to constant expanding of data storage capacity and development of 

highly productive hardware tools as well as intellectual learning algorithms, it has become possible to 

move predictive models to a new level of much higher efficiency and reliability [4]. However, there 

are a number of issues [5] which should be addressed while training predictive models and in this 

paper, we are raising some of them.  

As opposed to traditional statistical approaches in bioinformatics which are mostly based on 

averaging and comparing with other observed subjects, precision public health requires from the 

models applied to be more subtle and detect specific subgroups or individuals to treat them adequately. 

This relates to the sample representativeness which is always limited with participants of the particular 

study [6]. An external validation aims to estimate the biasness of the data used and the reliability of 

generalizations made and their extrapolations to unobserved subjects. The model trained should 

identify cases of novelty which cannot be processed confidently based on the patterns revealed from 

the sample. This is the first issue which we are covering in this paper.  
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In more detail, there is a clear difference between two types of wrong predictions: false positive 

and false negative. The second one has much more serious consequences and the number of these 

mistakes should be minimum. The use of ongoing follow-up study data for training predictive models 

entails additional risks of mislabelling training examples. Disease events and hospitalizations give us 

information about sick subjects, whereas there are many health problems which do not have any 

symptoms (silent stroke and silent myocardial infarction) and stay undiagnosed before the thorough 

clinical screening [7, 8]. Therefore, if follow-up examinations are conducted very rarely, there is a risk 

to give a label ‘healthy’ mistakenly to those who are not healthy anymore just because this information 

is not presented in the up-to-date records of events and hospitalizations. Moreover, it is hard to say 

definitely whether healthy subjects will remain healthy for a long time in the future. To avoid wrong 

‘healthy’ labels in the training data which may cause false negative predictions, training examples 

should be processed carefully. If there are some overlapping regions of sick and healthy subjects in the 

training data, it should give the reason to treat these healthy subjects as a risk group. This is the second 

issue which is considered in our study.  

Besides, to train an effective model, predictor variables associated with a particular disease should 

be included in the vector of inputs. The lack of relevant variables leads to the deterioration of the 

model predictive ability. It is more reasonable to start a learning process with an extended variable set 

and select relevant variables during it than to pre-select a smaller subset based on the existing 

knowledge and miss some informative data [9]. In our study, this point is also highlighted to some 

extent.   

More specifically, this work is primarily focused on handling overlapping classes in the 

cardiovascular predictive modeling. Popular techniques applied to solve the problem of overlapping 

classes include a k-Nearest Neighbours (kNN) approach [10], a fuzzy set representation [11], and 

Support Vector Data Description (SVDD) [12]. The method proposed in this paper is based on the k-

Nearest Neighbours approach, which has been complemented with a novelty detection and a feature 

selection technique. We applied our method to one of the most extensive study populations in the field 

of epidemiology, the Kuopio Ischemic Heart Disease [13] cohort, and proved that it could increase 

sensitivity of predictive modelling as well as detect the risk group of subjects mistakenly labelled as 

‘healthy’.      

2.  Methods 

In the original k-Nearest Neighbours approach developed for handling overlapping classes [10], the 

possibility to detect outliers which look like distant isolated points of the training data is built in the 

approach. However, many predictive models are robust to outliers in the training data if the number of 

outliers is reasonable (such as Random Forest [14]). In the epidemiological predictive modeling, the 

detection of outliers in the test data, which represent cases of novelty, is specifically important because 

it allows preventing the model from unjustified extrapolations and wrong predictions. Therefore, in 

our method proposed, unobserved test subjects could be labelled as: sick or healthy with the high 

confidence if they belong to non-overlapping regions; at risk, which corresponds to subjects from 

overlapping regions; or novelty if the case subjects demonstrate their specificity and these phenomena 

could not be explained based on the training data. 

The approach includes three main steps: 

Step 1. Determine sick and healthy training examples which overlap and do not overlap in the 

space of predictor variables.  

Let S  and H  denote sick and healthy subjects of the training data which belong to the 

overlapping regions, 
*

S  and  
*

H  denote sick and healthy subjects which are from the non-

overlapping regions.  

Step 2. Train two predictive models using two different training sets: 
**

1
HSSTrainSet   and **

2
SHHTrainSet  , where all training examples are labelled 

with -1 or 1, indicating healthy and sick, respectively.  
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Step 3. Assign labels for the test data TestSet  based on the following scheme: 

 

 Check whether iTestSet  is a case of novelty, testNi ,1 , where testN  is the number of test 

examples: if yes, set its label to novelty; if no, proceed with the next step. 

 Apply both trained models to iTestSet . If the first model returns -1 (healthy) or the second 

model returns 1 (sick), this prediction is given with the high confidence and should be 

accepted; otherwise set its label to at risk. 

 

In Step 1, to define overlapping and non-overlapping regions, k-Nearest Neighbours should be 

found for each training subject: if the number of nearest neighbours which belong to the other class is 

larger than a threshold K_boundary, then a training example is considered to be from the overlapping 

region. k-Nearest Neighbours are determined using the Euclidian distance. The number of nearest 

neighbours is denoted by K_nearest. 

 In Step 3, to check if a test subject is a case of novelty, reverse k-Nearest Neighbours from the 

training data should be found for each test subject: if the number of reverse k-Nearest Neighbours is 

lower than a threshold K_noise, a test example is admitted to be a case of novelty. Reverse k-Nearest 

Neighbours of a test example iTestSet  are subjects from the training data which have iTestSet  within 

their k-Nearest Neighbours. 

As a predictive model, we apply Random Forest [15], which is an ensemble of decision trees 

trained on different sub-samples on the training data. Averaging over ensemble predictions tends to 

enhance the model performance and tackle over-fitting. The following settings are defined [16]:  

  

 The number of trees in the forest is 250; 

 The maximum depth of the tree is 10; 

 The function to assess the quality of a split is the Gini impurity; 

 Bootstrapping (random sampling with replacement) is True; 

 The number of features considered while looking for the best split is M , where M  is the 

number of predictors; 

 The minimum number of samples at a leaf node is 1; 

 The minimum number of samples needed to split an internal node is 2. 

 

Additionally, variable selection has been incorporated into Step 1. The idea behind this extra step is 

to minimize overlapping of sick and healthy training subjects by selecting relevant predictors. In this 

study, we apply Random Search [17] to demonstrate possible benefits of variable selection. 

Random Search is implemented as follows: 

Step 1. Start with a binary vector 
*X  of the length M and fill it with 1, which means that all 

variables are included at the beginning of the search. Evaluate the number of overlapping subjects in 

the training data )( *XF .    

Step 2. Repeat N times Step 2.1. 

Step 2.1. Based on 
*X , generate K candidate solutions iX , Ki ,1  changing each coordinate of 

*X  to the opposite value 10  or 01  with the probability mp : 1 means that the corresponding 

variable is selected, whereas 0 means that it is not. From the set of iX , Ki ,1 , choose the best 

candidate minX , which provides the minimum number of overlapping training subjects )( minXF . If 

)( minXF )( *XF , then 
*X = minX .  

After variable selection models are trained on the set of selected predictors. 
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3.  Dataset description 

The epidemiological data KIHD used in this study has been collected during the ongoing project 

initiated in 1984 to investigate risk factors of cardiovascular diseases (CVDs) and some other 

disorders in the population sampled in the city of Kuopio and its surrounding communities in Eastern 

Finland [13]. KIHD is one of the most extensively characterized epidemiological study populations in 

the world, with thousands of biomedical, psychosocial, behavioural, and clinical variables. 

In this paper, we use an excerpt of KIHD which contains results of examinations of 60-81-year-old 

men in 2006–2008. The predictor variables have been produced from this information and utilized to 

predict CVDs from the examination till 2015. CVD diagnoses from this period, recorded by the 

national Hospital Discharge Register maintained by the National Institute for Health and Welfare and 

the national Causes of Death Register maintained by Statistics Finland, have been considered to 

generate an output variable with two possible values ‘healthy’ or ‘sick’. Healthy subjects do not have 

any CVD-related diagnosis in their records from 2006–2008 till 2015, whereas sick subjects may have 

incidents such as stroke, coronary heart disease (CHD), acute myocardial infarction (AMI).   

Some pre-processing was applied, which led us to the dataset with 775 subjects and 81 predictors: 

1) We removed variables containing more than 30% of missing values, as a result, the number of 

variables was reduced from 86 to 81. Subjects represented in the dataset with rows having more than 

10% of gaps were also excluded: the sample size decreased from 1241 to 1229. 

2) Subjects who had any CVD-related diagnosis in the examination records in 2006-2008 were 

excluded: the sample size reduced to 775.  

After these steps, we obtained the dataset with 417 healthy and 358 sick subjects, which was 

relatively balanced.     

4.  Results and discussion 

The 10-fold cross-validation procedure with stratification was performed to estimate the Random 

Forest performance (accuracy, sensitivity, specificity) in the experiments. To standardize the range of 

variables, variance scaling was applied. First, we trained this model on the full set of input variables, 

the proposed kNN-based approach was not applied. As a result, we obtained the following confusion 

matrix: 

Table 1. Confusion matrix obtained by the Random Forest model. 

 Actual Sick Actual Healthy 

Predicted Sick 197 120 

Predicted Healthy 161 297 

The basic measures were calculated based on table 1: accuracy = 63.74%, sensitivity = 55.03%, 

specificity = 71.22%. This result was taken as a baseline. The number of false negative predictions is 

quite high: 161 subjects who should be under medical supervision to prevent incidents of CVDs were 

mistakenly labelled as healthy. The amount of these errors should be as minimum as possible. 

Meanwhile, false positive predictions mean overdiagnosing and possible additional clinical tests with 

no actual reason. However, the model may also predict diseases which will occur in the nearest future 

but this information has not been in the records yet.           

Next, we applied the proposed kNN-based approach to make predictions for the overlapping groups 

of sick and healthy subjects more carefully. The following settings were chosen: K_noise = 2, 

K_boundary = {3, 5, 7, 9}, K_nearest = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}. 

In figure 1, we demonstrate how these settings affect the ratio of confidently labelled subjects to those 

who are in the risk group or cases of novelty.  

Generally, we note that increasing K_nearest, we decrease the amount of confidently labelled 

subjects and increase the number of subjects in the risk group (overlapping region), while K_noise and 

K_boundary are constant. This is because the more nearest neighbours are taken into account, the 

more subjects from the other class might be detected nearby, which increases chances of training 

subjects to be treated as from overlapping regions.   
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At the same time, the increase of K_nearest causes the decrease in the number of subjects 

categorized as cases of novelty. Larger values of K_nearest correspond to the higher number of 

reverse nearest neighbours which have a considered test subject within their k-Nearest Neighbours. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Percent of 

confidently labelled 

subjects for different 

settings. 
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As we increase K_boundary, while K_nearest and K_noise are constant, we increase the number of 

test subjects labelled. This happens because we soften our threshold K_boundary and fewer training 

subjects are considered to be from overlapping regions.   

Then, we chose two moderate levels of K_boundary, which were 5 and 7, to investigate how 

sensitivity and specificity changed with the growth of K_nearest. Test subjects from the risk group or 

cases of novelty were processed as required a medical check-up because our model could not make 

confident predictions for them. Therefore, healthy test subjects who were considered to be at risk or 

cases of novelty referred to false positive predictions, whereas sick test subjects who were required a 

medical check-up (at risk or cases of novelty) related to true positive predictions. In figures 2 and 3, 

we illustrate how sensitivity and specificity vary with the increase of K_nearest. Blue and red 

horizontal dashed lines refer to the baseline. Asterisk labels represent sensitivity (the upper plot) and 

specificity values (the lower plot).    

 

Figure 2. Analysis of sensitivity and specificity for different levels of K_nearest and K_boundary = 5. 

The increase of K_nearest leads to the growth of sensitivity and the reduction in specificity. On the 

one hand, the reduced specificity might be treated as overdiagnosing and the cost of the increased 

sensitivity. On the other hand, false positive predictions may recognize incidents of silent diseases 

with no symptoms or CVDs from the nearest future, which have not been in the records yet. If we 

compare how sensitivity and specificity change with the increase of K_nearest for two different levels 

of K_boundary, we may note that for K_boundary = 5 they increase or decrease more abruptly, 

whereas in case of K_boundary = 7 changing is more smooth.  
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Figure 3. Analysis of sensitivity and specificity for different levels of K_nearest and K_boundary = 7. 

We also investigated how the application of the kNN-based approach affected the accuracy of 

predictions. To estimate the accuracy, we took into account predictions made with the high confidence 

and analysed how it varies for the different number of nearest neighbors K_nearest. Figure 4 proves 

that when we categorize subjects not only as sick and healthy but also use the additional categories at 

risk and novelty, it allows us to increase the accuracy of predictions. For example, with the following 

settings K_nearest = 11 and K_boundary = 5 we could make predictions for 45% of the test subjects, 

increase the accuracy from 63.7% to 69.9% (9.7% of the relative improvement) and achieve 72.6% 

sensitivity and 55.4% specificity. If K_nearest = 12 and K_boundary = 5, we made predictions for 

39% of the test subjects, obtained 71.1% accuracy (11.6% of the relative improvement) and achieved 

76.8% sensitivity and 54.2% specificity. Thus, the kNN-based approach enabled us to enhance the 

model sensitivity and diminish the number of false negative predictions; increase the accuracy by 

choosing subjects for whom the model could make predictions with the high confidence; find healthy 

subjects who might be at risk and detect cases of novelty which were quite specific and could not be 

treated by the model trained.   
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Figure 4. Accuracy of predictions made with the high confidence. 

In the additional experiment, we incorporated variable selection into the proposed approach. This 

step aims at selecting the relevant predictors and, consequently, reducing the costs of clinical tests 

needed to collect this data. The following settings of Random Search were chosen: 1.0mp , ,30N  

20K . Table 2 contains the results of this experiment: the same metrics obtained without variable 

selection are given for the comparison. 

Table 2. Application of the kNN-based approach with variable selection. 

  Feature Selection  All Features 

K_nearest 9 10 11 12 13  9 10 11 12 13 

K_boundary 5 5 5 5 5  5 5 5 5 5 

Labelled, % 62.7 53.8 49.7 42.8 38.7  59.2 49.4 44.7 38.8 33.7 

At risk, % 22.5 32.9 38.5 44.9 50.2  26.2 37.3 43.9 50.1 55.9 

Novelty, % 14.8 13.3 11.9 12.3 11.1  14.6 13.3 11.5 11.1 10.5 

Sensitivity, % 67.3 70.7 72.6 74.3 77.1  63.7 69.0 72.6 76.8 80.7 

Specificity, % 55.2 53.0 51.1 45.6 43.4  57.8 55.4 54.2 49.6 43.7 

Accuracy, % 63.0 66.4 67.0 66.6 68.3  63.8 66.3 69.9 71.1 71.3 

The number of 

selected features 
39 41 40 42 39 

 
81 81 81 81 81 

 The results obtained demonstrate a possibility to decrease the number of predictors at least by a 

factor of two and maintain approximately the same level of the model performance. If we compare 

two cases with and without variable selection which provide us with the same amount of labelled test 

subjects (highlighted with gray), we note that all the metrics (accuracy, sensitivity and specificity) are 

similar, whereas the number of predictors used much lower. This experiment proves one more 

advantage of the proposed approach. The application of more advanced search strategies, instead of 

the presented greedy search, may lead to even better results.  

5.  Conclusion 

Modern concepts of predictive modeling in epidemiology require advanced and subtle methods of data 

utilizing. Models applied should be sensitive and flexible to distinguish the situations when knowledge 

discovered from observed training subjects could be extrapolated to unobserved ones. Since inaccurate 

predictions may lead to dramatic consequences, only prognoses made with the high confidence should 

be accepted.  

In this paper, we have proposed a kNN-based approach that enables us to reveal three categories 

within unobserved subjects, which are reasonably labelled, at risk and cases of novelty. If a new 
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example looks like a distant isolated point and clearly differs from the training data, it relates to cases 

of novelty. When unobserved subjects are from the regions where healthy and sick training examples 

overlap heavily, they are processed as a risk group. Moreover, the detection of overlapping regions 

may help to find healthy subjects from the training data who are at risk. All the other subjects are 

labelled as sick or healthy with the high confidence.  

This approach allowed us to increase the model sensitivity and accuracy of predictions made. 

Another advantage of our proposal is a built-in variable selection step. Finally, the presented 

categorization into three groups is intuitively clear as well as the reasons behind it, therefore, the 

results obtained are easily interpreted.    
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