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Abstract. In the framework of the endochronic approach, two variants of the tensor-parametric 

nonlinear constitutive relations of the creep theory are proposed. These equations take into 

account the dependence of the materials behavior on the type of stress state, as well as large 

deformations and rotations. The constitutive equations of proposed models are applied to explain 

some effects in the classic creep. It is shown that the results of simulating of uniaxial isothermal 

creep are in agreement with experimental observations. Presented examples demonstrate the 

possibilities and a potential of the approach. 

1. Introduction 

Endochronic theory in integral form was proposed by Valanis [1] and was applied for describing of 

creep phenomena by some researchers [2-5]. In these studies, the deformations were considered as small. 

In the field of large deformations, the Valanis endochronic theory was used to solve the problems of 

viscoelasticity [6], elastoplasticity [7] and viscoplasticity [8].  

The experimental data [9, 10] show that creep deformations of some materials may depend on the 

type of the stress state. Some theoretical results that describe such experiments in the framework of a 

geometrically linear incremental theory were presented in [11-13]. Endochronic theory of plasticity in 

Valanis’s form accounting for the type of the stress state was proposed in [14].  

In our paper, the endochronic theory of inelasticity in differential form [15] takes into account the 

type of the stress state and generalizes the constitutive equations for the finite deformations. 

2. Endochronic creep theory accounting the stress state type 

Let ij  is the tensor of active stress then 3/)('
ijiiijij    is its deviator, 2 , 3  and   are the 

second, the third invariants and the angle of the type of the stress state, correspondently, so as 

' '

2 ,ij ij            
' ' '

3 ,ij jk ki             
3 2

3 2sin3 6 ,                6 6.      

If the material is loading by uniaxial tension, the torsion or uniaxial compression then 6,    0  

and 6,   respectively. 

By analogy with the incremental theory [13], the deviator of transformed stress is introduced for 

accounting of the type of the stress state 
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' ( ) ,ij ij                (1) 

where a function )(  shows the deviation of active stresses from shear stress when ( ) 1.     

Using these transformed stresses, the differential constitutive equations of endochronic theory [15] 

are formulated now in the physical nonlinear form  

          ,
2 2

ij ij ij ijd dr r

G G dr dr g

 




 

  


         ,ii iiK                                        

(2) 

 

'

' (1 ) ,
2

ij

ij ijr
G


              : ,ij ijdr dr dr              : ,

ij ijdr dr
r

dt dt

   

   ( , ) ,r r                    ( , ) ,g g r r                        .r dr   

Here ii  and 
'
ij  denote the volumetric and deviatoric parts of the strain tensor, ijr  is the deviator of the 

parametric tensor,   is an analogy of the strain yield point, g  is an analogy of the hardening factor of 

the material,   is the endochronic parameter ( 10  ), G  is the shear modulus, K  is the bulk 

modulus, t  is the physical time, the sign «:» is the double contraction of the tensor product. 

If the endochronic parameter 1  then the parametric tensor ijr  and its invariants r  and r  

degenerate into the strain tensor ij  with invariants   and  . Therefore, the constitutive relations (2) 

(while maintaining endochronic characteristics) take the form 

          

' '

,
2 2 1

ij ij ij ijd d

G G d d g

   


 

 

  


                       (3) 

' ': ,ij ijd d d                 

' '

: ,
ij ijd d

dt dt

 
    

( , ) ,                         ( , ) ,g g                       .ii iiK    

Multiplying and dividing the equation (3) by dt , we yield 

      

'

'1
.

2 2

ij ij ij

ij

d d
k

G G dt dt

   


 

 

 
                                        (4) 

Here )1(1 g  is denoted by k . 

Material functions ),(    and ),(  gg  are defined from experiments according to the 

history of loading at different strain rates. Within the theory of elastoplastic processes and the 

incremental theory, a dependence of the strain yield point   from intensity of the strain rate   usually 

is approximated by the functions: 
0 ,a       

0 ( ) ,a        
0 ln(1 ),a b         etc. 

Note that all of the aforesaid is relating to the strain rates are not above  ~1 sec-1, i.e. quasi-static 

loading. 

Suppose that material hardening doesn’t depend on the time and loading history in the inelastic 

deformation and assume that constg  . For the parameter   the approximation  )(0
  is chosen. 

Then relation (4) will be changed into 

'

1 1 '

0 0

1
( ) ( ) .

2 2

ij ij ij

ij

d d
k

G G dt dt

 
  

    

 

                       (5) 
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For using the equations of model (5) we need to know material constants G , K , 0 , g ,   and 

function )( . To identify them, it is necessary to conduct torsion tests on thin tubular samples at three 

different constant strain rates as well as tension, compression and torsion tests at the same strain rate. In 

particular, the function )(  can be approximated, for example, as [15] 

      .
60,)]16(cosexp[

06,)]16(cosexp[
)(

2

1















k

k
                            (6) 

3. Geometrical nonlinear variant of the endochronic creep theory  

Now by analogy with above and as per recommendations [17], the geometrical nonlinear endochronic 

variant of constitutive equations for materials with sensitivity to the stress state view is presented. 

,
2 2

ij ij

ij ij

r
r r r

G G g

 
 





    


              ,ii iiK                                     (7) 

( , ) ,r r               ( , ) ,g g r r                    ( , ) ,G G r r  

(1 ) ,
2

ij

ij ijr D
G






                      ,ij ijD                      ,T

ij ij ijR R   

,ij ij ij ij ij ij   


                          .ij ij ij ij ij ij   


     

Here ,ij  

ij  denote the objective derivatives of the deviators of the stresses and deformations tensors, 

respectively. Further, ij  is the spin tensor, a proper orthogonal matrix ijR  is the rotation tensor, ijD  is 

the deformation-rate tensor ( ijD  is the symmetric part of the velocity gradient ijL ), 

1,ij ij ijR F U         
1,ij ij ijL F F         ( ) 2,T

ij ij ijD L L                                    (8) 

ijF  is the deformation gradient, the symmetric positive-definite tensor ijU  is the right-stretch tensor in 

the polar decomposition of the deformation gradient ,ij ij ijF R U  the upper sign «Т» is the operation 

of matrix transposition. 

Actually, equations (7)-(8) take into account both physical and geometrical nonlinearity in the 

constitutive relations of the inelasticity.  

We will note some obvious facts: 

 

 relations ijij D  are equations for determination of deformations, i.e. nonholonomic 

deformation measure is caused by neutral corotational derivative of Green-Naghdi type 

  ;TT RdtRDRR                                                               (9) 

 if ( ) 1,    1,   12 G  and 
0 ,k     then equations (7) take a form of generalized 

Maxwell model [16] 

,00 ijijijij kkk  


        ;ij ijD                                             (10) 

 from equations (10) it is clear that both axial deformations and shear ones are developed under 

the uniaxial loading, which is not appear in geometrical linear theories. 

 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042083

IOP Publishing

doi:10.1088/1757-899X/537/4/042083

4

 

 

 

 

 

 

4. Simulation of creep strains 

To demonstrate some possibilities of the presented approach, we consider the classical isothermal creep 

problem when the stresses are constant.  

4.1. Modelling at small strains 

Within model (5) suppose that constij   then the type of the stress state doesn’t change. Hence 

,const       ,constij 
       ,0 dtd ij       ,''' e

ijij
c

ij         ,'' Eij
e

ij    

where 
e

ij
' , 

c
ij
'  are the deviators of elastic strain tensor and creep one, E  is the Young modulus. Then 

relations (5) take a form 

.
2)(

1 '

1
0
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



















 ij
ijij

k
Gdt

d









                                                (11) 

Figure 1 presents the computational results of intensity creep strain made accordingly to equations 

(11) at equal stress under tension (dashed line), torsion (solid line) and compression (dash dot line).  

 

 

Figure 1. Creep strain intensity versus the time. 

Calculations were performed at 2 195 ,G GPа  400 ,MPа   0,01,k   
3

0 3,25 10 ,    

22,65 10 .    Function )(  was taken in form (6) with 12,01 k  and 2 0,08.k   

Figure 1 demonstrates: 

 

 the splitting of curves «creep strain ~ time» in depence on the type of the stress state;  

 the existence of the first and the second stages of creep strain; 

 the absence of the horizontal asymptotic values of creep. 

4.2. Calculation of creep in finite deformations field 

For the study of creep in the inelastic endochronic theory at large deformations (7), the deformation 

gradient ijF  is chosen in following form 
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This type of the deformation gradient generates the orthogonal rotation tensor ijR  and the spin tensor 

ij  with the next structures 

cos sin 0

sin cos 0 ,

0 0 1

ijR

 

 

 
 

  
 
 

         

0 1 0

1 0 0 ,

0 0 0

ij 

 
 

   
 
 

         12

11 22

.
k

tg
k k

 


                (13) 

Using relations (8) and (12), the components of the tensor ijD  are connected with the components of 

the deformation gradient ijF  by the differential equations 

11 11 11,k k D          
22 22 22 ,k k D         

33 33 33,k k D         
12 22 12 12 112 .k k D k D               (14) 

Then substituting relations (13) into the objective derivatives of stress and deformation deviators and 

into formulas (7), we yield closed system of ordinary differential equations. 

The isothermal creep strains in time were calculated in the frameworks of model (7), (8), (12) – (14) 

at the constant shear stress MPa40012   and ( ) 1.    A development of the creep strain intensity 

с  versus time is demonstrated in figure 2. The deformations from geometrically nonlinear equations 

(dashed line) are greater than ones obtained by the linear relations (solid line) as it is observed in 

experiments [9], [16], [18]. 

 

Figure 2. Creep curves under constant shear stress. 

5. Conclusions 

Proposed variants of the endochronic constitutive equations take into account the type of the stress state, 

large deformations and rotations. Solutions of the classical creep problems demonstrate the possibilities 

and a potential of these relations. Creep simulation results don’t contradict experimental observations. 

References 

[1] Valanis K 1971 Arch. Mech. Stosow. 23 517 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042083

IOP Publishing

doi:10.1088/1757-899X/537/4/042083

6

 

 

 

 

 

 

[2] Valanis K and Wu H 1975 ASME J. Appl. Mech. 42 67 

[3] Watanabe O and Atluri S 1986 Int. J. Plasticity 2 107 

[4] Wu H and Ho C 1995 ASME J. Eng. Mater. Tech. 117 260 

[5] Lee C 1996 Int. J. Plasticity 12 239 

[6] Bykov D L and Konovalov D N 2002 Mech. Solids 37 52 

[7] Wu H, Lu J and Pan W 1995 Int. J. Solids Struct. 32, 1079 

[8] Kletschkowski T, Schomburg U and Bertram A 2002 Mech. of Materials 34 795 

[9] Nikitenko A F, Sosnin O V, Torshenov N G and Shokalo I K 1971 J. Appl. Mech. and Tech. Phys. 

N2 118 

[10] Belan-Gaiko V N 1991 Strength of Materials N8 61 

[11] Gorev V V, Rubanov V V and Sosnin O V 1979 J. Appl. Mech. and Tech. Phys. N4 121 

[12] Tsvelodub I Yu 1983 Mech. Solids N3 94 

[13] Kadashevich Yu I and Pomytkin S P 1992 Mech. Solids N5 129 

[14] Kadashevich Yu I and Mosolov A B 1991 Dokl. Phys. 317 53 

[15] Kadashevich Yu I and Pomytkin S P 1997 Mech. Solids N4 99 

[16] Betten J 2005 Creep mechanics (Berlin, Heidelberg, New York: Springer) p 353 

[17] Kadashevich Yu I and Pomytkin S P 2010 Mech. Solids N6 865 

[18] Rabotnov Yu N 1969 Creep problems in structural members (Amsterdam, London: North-

Holland Publishing Company) p 822 


