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Abstract. An algorithm for a n-link manipulator movement amidst unknown static obstacles in 

a continuous space is presented. Given theorem stating that if the manipulator moves according 

to the algorithm will be discovered in a finite number of steps whether a given target 

configuration is reachable or not. The number, shapes and dispositions of obstacles may be 

arbitrary. 

1. Introduction 

In this article we propose an algorithm for a solution of the following Problem: a manipulating robot 

(MR) moving from a start configuration q0 amidst unknown obstacles, using limited information from 

its sensor system (SS), should in a finite number of steps discover whether a given target configuration 

qT is reachable or not. We will call the qT reachable if it satisfies both conditions: 1) it is not forbidden; 

2) it may be reached from a q0 in a finite number of steps only moving from one not forbidden 

configuration to another. A configuration is forbidden if it intersects with obstacles or does not satisfy 

constructive limitations. 

There are graph searching methods [1-3] which may solve the Problem. It is easier to use such 

methods in the case where we have full information about free and forbidden configurations before the 

beginning of the movement. A computer may then calculate a preliminary path and after that the MR 

may execute this path. But in case of unknown obstacles the MR has to investigate its environment 

and plan its path alternately. Then the following difficulty often arises: suppose we have just finished 

considering the vertices adjacent to a vertex q and we have to consider vertices adjacent to a vertex q’ 

and the q and q’ are not adjacent. In order to consider vertices adjacent to q’ the MR at first has to 

come to the q’. So we get a problem of the MR movement from q to q’. The necessity of searching and 

executing paths for multiple different q and q’ makes the total sum of the MR movements very big. In 

case we plan a path in known environment a computer simply switches its “attention” from q to q’, 

which are stored in the computer’s memory. 

Currently an approach based on sampling-based algorithms is being actively developed. On the 

first stage nodes in robot’s configuration space are chosen by some method. On the second stage the 

nodes are connected by edges and as a result we get a graph [1]. In various publications different 

methods for choosing nodes on the first stage and connecting them by edges on the second stage are 

proposed. The sampling-based approaches usually achieve resolution completeness, meaning that they 

will find a solution if one exists, but may run forever if one does not, or probabilistic completeness, 
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meaning that the probability tends to one that a solution is found if one exists (otherwise, it may still 

run forever) [4]. This approach may be developed to an effective one for known environment when we 

have full information about obstacles in advance. But in unknown environment the nodes 

(configurations) and edges we have generated may intersect with obstacles and methods how to 

choose new nodes and edges in order to solve the Problem in a finite number of steps were not 

proposed. It is possible to outline such representatives of the sampling-based approach as algorithms 

based on randomized potential field, Ariadne’s Clew algorithm [1, 2], probabilistic roadmaps [5], 

rapidly-exploring random trees [6-9], expansive-space trees[10, 11].   

In [12] we gave an algorithm solving the Problem in the continuous configuration space. It was 

supposed that the MR’s SS system may supply information about free and forbidden points from a 

small neighborhood of the MR’s configuration space points. In this article we consider more general 

form of the neighborhood.  

2. Task Formulation and algorithm 

2.1. Preliminary Considerations 

1)    The MR’s movement should take place in a hyperparallelepiped X defined by inequalities 

 

                                                         a1  q  a2,                                                                                    (1) 

 

where qX, q=(q1, q2…, qn) – vector of generalized coordinates, n – number of MR’s links, a1 -  

vector of lower limitations on the values of generalized coordinates,  a2 - vector of higher limitations. 

A configuration q will be considered as allowed (not forbidden) if it satisfies both conditions: 1) it has 

no common points with any obstacle; 2) it satisfies constructive limitations that is no prohibited 

intersection of links occurs and qX. X is continuous. The disposition, shapes and dimensions of the 

obstacles do not change during the whole period of the MR movement. Their number may not 

increase.We suppose that q0X and qTX. 

2)   MR has a SS which is turned on in every path changing point qiX, i=0, 1, ... and supplies 

information about a hyperball with the centre in the  qi  and with a radius r > 0. Let us call such 

hyperball as r-hyperball. The value of r is such that the r-hyperball includes all points q which are 

immediately adjacent to qi and all points qq immediately adjacent to every point q.   So it is possible to 

inscribe into the r-hyperball an -hyperball with the centre in qi and with a radius 0<<r. The case 

when the r-hyperball consists only from qi and the points q is inappropriate, such r-hyperball is too 

small. Consider that SS supplies information about every point from the r-hyperball whether it is 

allowed or forbidden and this information is exact and reliable. Exact information means that if MR 

asks SS to supply information about a point q* then SS supplies information namely about q*, not 

about q** q*. Reliable information means that if SS tells that a point q* is forbidden then it is really 

forbidden and if SS tells that a point q* is allowed then it is really allowed.  Further the exact and 

reliable information we will simply call reliable. A set Y(qi) consists from all points of the r-hyperball 

with the centre in qi. SS writes all points reliably defined as forbidden from the Y(qi) into a set Q(qi), 

and all points reliably defined as allowed - into a set Z(qi). 

When MR is in qiX, i=0, 1, ... its SS may also supply information about a Y1-neighborhood of qi. 

Consider that the Y1-neighborhood is a convex set of points, for example ellipse. It should be possible 

to inscribe in it the r-hyperball with the centre in qi. The set Y1(qi) consists from all points of the Y1-

neighborhood. The origin of a set Y1(qi) is in the point qi. The shape and size of the Y1(qi) should be 

the same for any qi, i=0,1, … That is if we have a set Y1(qi) with an origin in a point qi  and a set 

Y1(qj)  with an origin in a point  qj  then the  Y1(qj)  has the same number of points as the  Y1(qi)  and 

if (q1
j, q2

j, …, qn
j)=(q1

i+b1, q2
i+b2,…, qn

i+bn), where  b1,b2,,…,bn –some real numbers, then for every 

point  q'Y1(qj) there will be one and only one point  q”Y1(qn) such that (q1,' q2', …, qn')=(q1"+b1, 

q2" +b2, …, qn" +bn).  In other words we get Y1(qj) by displacing the Y1(qi) on the vector b=(b1, b2…, 

bn).   



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042079

IOP Publishing

doi:10.1088/1757-899X/537/4/042079

3

The information supplied by SS about the points which are beyond the r-hyperball and inside the 

Y1-neighborhood may be not reliable. SS writes all points reliably defined as forbidden from the 

Y1(qi) into a set Q1(qi), and all points reliably defined as allowed - into a set Z1(qi). MR stays in a 

path changing point qn until the set 

                                                               )(Q1())(Q(

00

FRBDN
n

i

i
n

i
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 qq  

is formed. So the set FRBDN is the set of all points about which MR has reliable information that 

they are forbidden. The sets  Y(qi), Q(qi), Z(qi), Y1(qi), Q1(qi), Z1(qi) may be written using one of 

such methods like formulas, lists, tables and so on, but we suppose that we have such method. We will 

not consider the SS structure.  

3)   We have a program PI(qn, qT, FRBDN, X) which solves a PI problem. The PI problem is: in a 

finite number of steps either generate a path L(qn, qT) satisfying the following conditions:  

3.1. L(qn, qT) connects qn and qT;  

3.2. L(qn, qT) ∩ FRBDN = Ø;  

3.3. L(qn, qT)  X  

in a case if at least one path satisfying conditions 3.1-3.3 exists in X or discover that no path satisfying 

conditions 3.1-3.3 exist in X. qn, n=0,1,… is a path changing point (see Algorithm), qT is the target 

point. The condition 3.2 means that no point from L(qn, qT) should coincide with any point from 

FRBDN. The condition 3.3 means that every point from L(qn, qT) should satisfy (1). If PI() succeeds in 

generating a L(qn, qT) it returns 1, if it fails – it returns 0. We propose to use an existing algorithm for 

the procedure PI() (see, for example, [13]), or a specially developed one. 

4)    MR executes any path L(qn, qT) in the following way. Consider that MR is in a point q* L(qn, 

qT). MR gets reliable information about the point q** L(qn, qT) which is the next after q*. If q** is 

allowed then MR moves in q**, if q** is forbidden then MR stays in q*. 

2.2. The Algorithm for Manipulators’ Control in the Unknown Environment 

We will denote the points where generation of a new path occurs as qn, n=0, 1, … We will call such 

points “path changing points”. Before the Algorithm work n=0 and qn= q0. 

Algorithm 

1 The MR is in qn. Turn on SS and form the set FRBDN. 

2 /*If the attempt to generate a path L(qn, qT) is unsuccessful*/ 

if (PI(qn, qT, FRBDN, X)=0) 

    return (qT is not reachable);     

endif 

/*Otherwise go to Step 3 to execute the path*/ 

3 MR begins to execute the path L(qn, qT). There may be two results of execution:  

1) MR comes to the point qcL(qn, qT) preceding qT and discoveres that qT is not forbidden. 

In this case: MR moves in qT ; return(qT is reachable).  

2) MR comes to a point qcL(qn, qT) and discovers that the next point  q*L(qn, qT) is 

forbidden. In this case: n:=n+1; qn:=qc; go to 1. 

Theorem. If MR moves according to the Algorithm it will solve the Problem in a finite number of 

steps. 

Proof.  Before the Algorithm considering let us formulate the following Question: “Have we 

received the information that qT is reachable/unreachable?” There may be three answers to the 

Question: 1) “Yes, we have received the information that qT is reachable”; 2) “Yes, we have received 

the information that qT is unreachable”; 3) “No, we have not received the information whether qT is 

reachable or unreachable yet”. 
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Consider at first the case when the Y1-neighborhood of every path changing point qn, n =0,1,2,…  

has the shape of the r-hyperball. 

In Step 1 of Algorithm one may see path changing points qn, n=0, 1, 2, …  When the MR is in such 

point the procedure PI() is called. The task of PI() is to generate a path L(qn, qT) leading to qT because 

there is a hope that MR will not meet earlier unknown forbidden points and then MR will solve the 

Problem. In case when PI() fails to generate a path we get the answer (2), if PI() has generated a path 

L(qn, qT) we get the answer (3) and Algorithm goes to Step 3. On Step 3 MR begins to execute the 

L(qn, qT) according to the item 4 of the Preliminary Considerations. If MR executing L(qn, qT) does 

not meet a forbidden point then it comes to the allowed point qT and we get the answer (1). An 

execution of any path L(qn, qT) is fulfilled in a finite number of steps because the length of any L(qn, 

qT) is finite. But it may happen that MR will come to such a point qcL(qn, qT), that the next after qc 

point q* L(qn, qT) is forbidden. In this case MR makes: n := n +1; qn:=qc that is qc becomes a new 

path changing point and Algorithm goes to Step 1. Let us show that the number NPATH of the path 

changing points qn, n=0, 1, 2,…,NPATH-1 will be finite and all of them will be different. 

Let us prove that all path changing points will be different. Suppose that the MR changed a path 

being in a point qs, and later it again changed a path, being in a point qp, that is s<p. Let us show that 

qsqp. Suppose, at first, that, on the contrary, qs=qp. Then Q(qs)=Q(qp). When the MR was in qs, it 

generated a path which did not intersect with the sets Q(qi), i=0, 1, ... , s. When the MR reached the 

point qp, it discovered that it was necessary to change the path that is this path intersected with the set 

Q(qp). But Q(qp)=Q(qs) and Q(qs) was taken into account when the path which brought MR to qp was 

generated. It means that the MR cannot come to a point of the path changing qp which will be equal to 

any other point of the path changing and it means that all points where the MR changes its path are 

different. 

Now let us show that the number of path changing points is finite. Suppose that it is infinite. All 

path changing points must satisfy the inequalities (1). It means, that the sequence of these points is 

bounded. According to the Boltsano-Weierstrass theorem it is possible to extract from this sequence a 

convergent subsequence qi, i=1,2,… According to the Cauchy property of the convergent sequences it 

is possible for any  to find such a number s that all points qi, i>s will lie in an -neighborhood of qs. 

Let us take <r. Consider an arbitrary path changing point qi lying in the -neighborhood of qs. As far 

as in qi the MR had to change the path, it means that among the points immediately adjacent to qi the 

MR met earlier unknown forbidden points. But all points immediately adjacent to qi belong to the r-

hyperball of qs, and forbidden points immediately adjacent to qi belong to Q(qs). But Q(qs) ought to be 

taken and therefore was taken into account when generation of paths L(qi, qT) occurred for every j≥s. 

So, assuming that the number of path changing points is infinite we got impossible situation – some 

path changing points will lie in the -neighborhood of another path changing point. Therefore the 

number NPATH of path changing points is finite. 

So, the number of path changing points qn, n=0,1,2,…, NPATH-1 is finite and they are all different. 

Consider that the MR came to the last path changing point qNPATH-1. It means that the MR has done a 

finite number of steps moving from q0 and still has the answer (3) to the Question. When MR is in 

qNPATH-1 PI() is called on Step 2. If PI() fails to generate a path we have the answer (2), if PI() has 

generated a path we get the answer (3). The MR begins to execute the path L(qNPATH-1, qT). As far as 

the path changing point was the last, MR will not meet earlier forbidden points, will reach qT in a finite 

number of steps because the length of L(qNPATH-1, qT) is finite, will discover that qT is allowed, the 

answer (1) will be received. So the answer whether qT is reachable or unreachable will be received in a 

finite number of steps. 

We proved the theorem for the case when the Y1-neighborhood of every path changing point qn, 

n=0,1,2,…  is the r-hyperball. But one may see that the proof will be valid for any Y1-neighborhood 

satisfying the Preliminary Considerations – the number of path changing points will be finite, all of 

them will be different, but we should write into FRBDN all those points about which SS supplied 

reliable information that they are forbidden. The theorem is proved. 
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So, it was shown that the number NPATH of the path changes is finite, and therefore one may see 

that the solution of Problem is reduced to a solution of a finite number of problems of a path planning 

in the presence of known forbidden states with its subsequent execution. One may see that the 

Algorithm may be considered as a sampling-based algorithm, where sampling is made by using the 

procedure PI() and when the path in a point qn, n=0,1,2,… intersected with an earlier unknown 

forbidden state MR replenishes FRBDN by those points about which we have reliable information that 

they are forbidden and generates a new path satisfying conditions 3.1-3.3. 

3. Conclusion 

An algorithm for a n-link manipulator movement amidst arbitrary unknown static obstacles was 

presented. The obstacles number, shapes and dispositions may be arbitrary. The MR’s sensor system 

supplies information about a neighborhood of every path changing point in predefined volumes. Given 

a theorem stating that if MR moves according to the algorithm it in a finite number of steps discover 

whether a target configuration is reachable or not. 
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