
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

A modified particle swarm optimization algorithm for location problem
To cite this article: I A Osinuga et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 537 042060

 

View the article online for updates and enhancements.

This content was downloaded from IP address 119.23.238.202 on 19/09/2019 at 00:14

https://doi.org/10.1088/1757-899X/537/4/042060
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/895062823/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042060

IOP Publishing

doi:10.1088/1757-899X/537/4/042060

1

 

 

 

 

 

 

A modified particle swarm optimization algorithm for 

location problem 

I A Osinuga1, A A Bolarinwa1 and L A Kazakovtsev2,3 

1Federal University of Agriculture, PMB 2240, Alabata Road, Abeokuta, Nigeria, 
2Reshetnev Siberian State University of Science and Technology, 

31 Krasnoyarskiy Rabochiy av., Krasnoyarsk, 660037, Russia, 

Siberian Federal University, 79 Svobodny av., Krasnoyarsk, 660041, Russia 

 

E-mail: levklevk@gmail.com 

Abstract. In the Weber location problem which was proposed for optimal location of industrial 

enterprises, the aim is to find the location of a point such that the sum of weighted distance 

between this point and a finite number of existing points is minimized. This popular model is 

widely used for optimal location of equipment and in many sophisticated models of cluster 

analysis such as detecting homogeneous production batches made from a single production batch 

of raw materials. The well-known iterative Weiszfeld does not converge efficiently to the 

optimal solution when the solution either coincides or nearly coincides with one of the demands 

point which is not the optimum. We propose a modified Particle Swarm Optimization (PSO) 

algorithm. The velocity update of the PSO is modified to enlarge the search space and enhance 

the global search ability. The preliminary results of these algorithms are analyzed and compared. 

1.  Introduction 

Facility location problems seek to optimize the placement of facilities such that the demands of 

customers can be met at the lowest cost and/or shortest distance. Location optimization problems have 

numerous applications in the field of mathematics, economics, physics and engineering. Many kinds of 

the distance functions can be employed, distances in the Weber problems are often taken to be Euclidean 

distances [1,2]. 

Weber problem (also often called the Fermat Steiner Weber problem, median problem, minisum 

problem, or, in the special case of three existing facilities having equal weights, as the Fermat Torricelli 

problem): 
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where 22 )by()ax()P,X(d iii  is the distance between the new facility and the existing 

facility ,i ),( yxX   
is the coordinate of the location of new facility, ),( iii baP   are the coordinates 

of the location of existing facility i  and )( Ii Pww   are positive weights that specify the demand of the 

existing facility iP . The objective is to minimize the total travel cost (as the case may be) between the 

new facility X  and iP  modeling, for example, a warehouse, and a set of customers, respectively. 
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Researchers have worked on Weber location problem especially on the distance function (see: 

Osinuga et al. [4], Drezner and Hamacher [5], Drezner et al. [6], Osinuga and Bamigbola [7], Brimberg 

et al. [8], Farahani and Hekmatfar [9], Kazakovtsev et al. [10], Osinuga et al. [11], Stanimirovic et al. 

[12]). 

2.  Known Methods 

Weiszfeld procedure is a one-point iterative method that involves the calculation of gradient in each 

iteration, and it is widely used in solving single facility Weber problem with Euclidean distances and 

also in multi-facility procedures as a step in the solution algorithm [13], although it was observed that 

the method can reach a non-optimal point, the situation described as “getting stuck”, and starting points 

of method leading to this situation are called “bad” starting points [14]. 

Choose an initial solution, 0X   and set 0k  

1. Iteration step:  
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2. 1 kk .The stopping criterion rule is usually number of iterations or reaching a tolerance. 

The general purpose optimization method known as PSO was an intelligent technology first 

presented in 1995 by Eberhart and Kennedy [15], Shi and Ebehart [16]. Stochastic search methods which 

do not require any properties of the objective function have been developed. They include, among others, 

genetic algorithms (GA) [17], differential evolution (DE) [18], particle swarm optimization (PSO) [15] 

and ant colony optimization (ACO) [19]. These methods evaluate the objective function in a random 

sample of points from the search space and subsequently manipulate the sample; they are often referred 

to as population set-based global optimization methods. This work deals with solving (1) using a 

modified PSO. It is widely used to find the global optimum solution in a complex search space. The 

velocity of each particle is updated using its updated velocity per iteration in the algorithm. Thus, as 

compared to other population set-based methods, e.g., genetic algorithm or differential evolution, PSO 

has memory. Previously visited best positions are remembered, while in GA and DE, these are forgotten 

once the current population changes [20]. Also, Fathali and Jamalian [21] used the concept of PSO in 

their efforts at providing an efficient method for goal square Weber location problem (a variant of Weber 

location problem). 

PSO is initially a group of random particles (random solutions), and then the optimum solutions are 

found by repeated searching. In every iteration, a particle will follow two bests to renew itself: the best 

position found for a particle called Pbest;i and the best position found for the whole swarm called Gbest. 

Suppose 
tx  denote the position vector of particle in the multidimensional search space at time step 

t , then the position of each particle is updated in the search space by 

11 
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t
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0

  
  (2) 

where 
t

ix  is the position vector of particle i  at time step t , 
t

iv - is the velocity vector of particle i  that 

drives the optimization process,  maxmin , xx  is the uniform distribution where minx  and  maxx are its 

minimum and maximum values respectively. 

Global best PSO (or gbestPSO) is a method where the position of each particle is influenced by the 

best-fit in the entire swarm. It is the best value of particle in the swarm. Pbest;i is the personal best position 

corresponds to the position in search space where particle i  had the smallest value as determined by the 
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objective function f, considering a minimization problem. Gbest  is the position yielding the lowest value 

amongst all the personal best Pbest;i 

Local Best PSO (lbest PSO) is a method which only allows each particle to be in influenced by the 

best- t particle chosen from its neighbourhood. 
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Gbest(at time t) = min[Pbest;i
t]. For Gbest PSO method, the velocity of particle i is calculated by 
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t

ijv  is the velocity vector of particle i  in dimension j  at time t , 
t

ijx  is the position vector of particle 

i  in dimension j  at time t , Pbest;i
t - is the personal best position of particle i  in dimension j  found 

from initialization through time t , Gbest is the global best position of particle i  in dimension j  found 

from initialization through time t , 1c  and 2c  are coefficients of learning factors are positive acceleration 

constants, which are used to level the contribution of the cognitive and social component respectively, 
t

jr1  and 
t

jr2  are random numbers from uniform distribution  at time t . 

For lbest PSO method, we have 
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where Lbest;i is the best position that any particle has had in the neighbourhood of particle i  found 

from initialization through time t . 

The velocity components are essential for updating particles velocity. In (4) and (5), 
1t

ijv  is called 

inertia component that provides a memory of the previous flight direction that means movement in the 

immediate past;  t

ij

t

ibest

t

j xPrc ,11  is called cognitive component which measures the performance of 

the particles relative to past performances;  t

ijbest

t

j xGrc 22  for gbest PSO or  t

ijbest

t

j xLrc 22  for lbest 

PSO is called social component, it represents the process of learning from the experiences of other 

particles on the part of certain particle, and it also shows the information sharing and social cooperation 

among particles. 

Algorithm (PSO) 

1.Initialize iteration counter. Initialize N random position of particles and store them in S. Initialize 

N random velocities and store them in V. Initialize N pbest and store them in P. Set gbestt equal the best 

pbest in P. 

2.Iteration Step: For each ith particle: 

2.1Update V: Calculate velocity Vi
t+1 using (4). Update S: calculate position xt

i
+1 using (2). Update 

P: calculate position pbestt
i
+1 using (3) . Update gbest: gbestt+1= min[Pbest;i

t+1];  i ϵ [1,…,n]. t:=t+1. 

The stopping criterion rule is usually maximum number of iterations, the maximum CPU time, the 

number of successive best objective function values without any improvements or reaching a tolerance. 

Shi and Eberhart introduced the inertia weight, w , a scaling factor associated with the velocity during 

the previous time step, resulting in a new velocity update equation, so that (4) becomes 
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The original PSO velocity update equation can be obtained by setting 1w . Shi and Eberhart indicate 

that choosing w  ϵ [0.8, 1.2] results in faster convergence, but that larger w  values (> 1.2) result in more 

failures to converge [16]. 
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Clerc and Kennedy [21] also introduced another interesting modification to the canonical PSO in the 

form of a constriction coefficient, K , which controls all the three components in velocity 

Uupdate rule (3.4). This has the effect of reducing the velocity as the search progresses and also 

insure theconvergence. In this modification, the velocity update is given as 
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3.  New Algorithms 

The MPSO proposed in this work is aim at expanding the scope of the best positions which are saved 

by each particle and the swarm, in order to improve the performance of the PSO. To achieve this, full 

advantage of the excellent positions encountered by each particle and the swarm are observed, we take 

cognizance of the second personal best position (sPbest;i
t) and the second global best position(sGbest) 

alongside the normal personal best position(Pbest;i
t) and the global best position(Gbest) of the PSO and we 

try to insure convergence by the introduction of K , the constriction coefficient. 

The following equations illustrate these positions. 
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and the ith particle's iterative velocity is ))t(v)t(x(fmax)t(v k
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 where )(xf  is the 

fitness value at x  position. and K , the constriction coefficient, is a function of  : 
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At the next iterative position, we would have had the group's Gbest and sGbest updated alongside the 

renewal of the particles's Pbest;i and sPbest;i at the end of the previous iterative position as follows:  
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Here, n  is the number of particles in the particle swarm. 
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Algorithm (MPSO): 

 

 Initialization: setting the maximum iterative steps and the number of the particles producing 

randomly the position and velocity of each particle in the particle swarm. 

 Evaluate the  fitness value of each particle. 

 Renew the Pbest;i and sPbest;i position of each particle according to (4.6) and (4.7). 

 Renew the Gbest and sGbest position in the particle swarm according to (4.8) and (4.9). 

 Change the velocity of each particle according to (4.1-4.4). 

 Move each particle to the new position according to (3.1) and return to 2 above. 

 Repeat 2-6 until a stopping criterion is satisfied. 

4.  Computational examples 

To justify the effectiveness of our proposed method, the MPSO, we test the algorithm on some problems. 

Example 1 (Francis and White [2]). Five existing facilities are located at (2.5,4.5), (3,2.5), (5,2), (5.5,4) 

& (8,5). The weights applied to these facilities are 2, 5, 7, 10 & 12 respectively. In Example 2, we have 

10, 15, 20, 25, 30, 40 and 50 points problems were randomly generated with their weights. 

In both examples 1 and 2, we used the WA, the classical PSO and the MPSO proposed in this work 

to solve all the points problems. In each problem, the objective function, the CPU time (in seconds), the 

iteration number and the corresponding point, that is, the new facility position were all estimated. 

All computations were carried out on a Computer with Intel (R) processor with 4GB of RAM and 

CPU 2.16 GHz, and algorithms were coded in JavaScript software. In all methods, the iteration step of 

the algorithm is repeated until the tolerance level is reached. For WA, the iteration is stopped when none 

of the successive values of the new facility being sought in the iteration changes. 

It is noticed empirically that larger number of swam size and larger iterations only increased the 

computational complexity per iteration and more time consuming. They also slow down the algorithm 

without leading to any better solutions. It is also noteworthy that the CPU time for all the problems as 

shown in table 1, indicated that the CPU times of WA are less than that of PSO and the proposed MPSO 

in all cases. However, this being an improved method, MPSO could find more promising solutions to 

all the problems and with considerable advantage in iteration numbers and was able to solve all the 

problems minimally. 

Table 1. Numerical Results of example 2 in terms of objective function,  

CPU time and the number of iterations. 

Problems OBJECTIVE FUNCTION  CPU TIME 

ITERATION 

NUMBER 

 WA PSO MPSO WA PSO MPSO WA PSO MPSO 

10 points 82.1039 82.1087 82.0970 0.02 0.37 0.1 41 38 32 

15 points 114.8334 115.7032 113.7089 0.01 0.34 0.10 21 24 19 

20 points 225.6470 226.1577 225.6289 0.01 0.14 0.11 18 20 18 

25 points 211.9472 212.0919 210.6591 0.02 0.68 0.19 24 25 18 

30 points 261.4967 261.7235 261.3874 0.01 0.63 0.17 21 21 18 

40 points 358.9703 359.0490 358.1918 0.01 0.88 0.2 17 20 16 

50 points 478.0019 481.0474 476.2441 0.02 1.05 0.26 18 19 16 

5.  Conclusion 

We showed that the modified PSO algorithm is a good option to the commonly used WA procedure, 

and this method has empirically been shown to be able to solve single facility Weber location problems 

effectively and efficiently. However, there are still areas that can be explored by researchers. The 

proposed MPSO can be worked upon to solve some benchmark problems and also, it can be hybridize 

with other meta-heuristic algorithms for solving general nonlinear optimization problems. A constrained 
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Weber location problem with the search direction in some specific regions can be solved using the 

MPSO. 
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