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Abstract. We describe and test an approach to finding roots of systems of nonlinear equations. 

This approach is based on a reduction to an auxiliary optimization problem. In spite of the fact 

that the reduced problem is, in general, a nonconvex optimization problem, we use only local 

search techniques and provide conditions for the obtained stationary point to be a root of the 

initial system of nonlinear equations. Results of computational experiments are given.  

1.  Introduction 

We consider the problem of determining at least one root of a system of nonlinear equations  

                                                 ,,,...,1,0)( n

i Rxnixf                                                       (1.1) 

where niRRf n

i ,...,1,:   are continuously differentiable functions.   

A huge number of papers and books are devoted to solving system (1.1). Let us only mention [1], 

one of the most well-known books. See also [2] for a recent review on iterative methods of solving 

systems of nonlinear equations. Among the modern effective methods, the LP-Newton method must 

be mentioned, see [3-5] and references therein. A comprehensive survey of the existing literature on 

the topic of the paper can be a subject of a separate paper. In this work, our goal consists in presenting 

a simple tool based on an optimization approach and some available optimization solvers. We consider 

four types of optimization problems tightly connected to finding roots of system (1.1). The suggested 

approach deserves wider applications in practice, first of all, due to its simplicity and effectiveness.  

Assumption. It is assumed that system (1.1) has at least one root. The paper is organized in the 

following way. Section 2 describes the optimization reduction, gives theoretical justification and 

discusses some implementation questions concerning a starting point. Section 3 contains preliminary 

testing results.  

2.  Optimization reformulation 

We consider two optimization problems associated with system (1.1). The first problem is well-known 

and has the following form 





n

i

n

i RxxfxF
1

2

1 }.:)()(min{                                            (2.1) 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042007

IOP Publishing

doi:10.1088/1757-899X/537/4/042007

2

 

 

 

 

 

 

The second one is a constrained optimization problem 

                                                       },:)(min{ 2 XxxF                                                               (2.2) 

                                 



n

i

i xfxF
1

2 ),()( }.,...,1,0)(:{ nixfRxX i

n                            (2.3) 

For both optimization problems the following (obvious) statement is true. Let *x  be a global 

minimum point. For k=1 or 2, if 0*)( xFk , then system (1.1)  is inconsistent. If 0*)( xFk , then 

*x  is a root of system (1.1). In order to prove inconsistency, we unavoidably have to globally solve 

problem (2.1) or (2.2)-(2.3). Without convexity assumptions, finding a global minimum point is 

computationally intractable problem except for some very particular cases. One of the main reasons 

for that is the absence of practical criteria of global optimality. In other words, if we have a point 

suspected to be globally optimal, we simply cannot check whether it is globally optimal or not by 

some non-exponentially enumerative (or non-NP hard) procedure. If we know that the investigated 

system is solvable, as in our case, then the situation is much easier. Equality 0*)(1 xF  or 

0*)(2 xF  plays the role of a global optimality criterion. Without our assumption, we do not know 

whether the zero value of the objective functions is achievable.  In this case, we can use local search 

algorithms [6] to find a stationary point *x and check the value of the objective.  

Let us describe now a very important case when a stationary point is a global minimum point.  

Theorem 1. Let *x  be a stationary point of problem (2.1) and let gradients nixf i ,...1),( *  be 

linearly independent. Then *x is a point of global minimum and 0*)(1 xF . 

Proof. Since *x  is a stationary point, 





n

i

ii xfxfxF
1

1 .0*)(*)(2*)(                                        (2.4)                 

Gradients nixf i ,...1),( *  are linearly independent, therefore equality (2.4) is valid if and only if 

0*)( xf i , ni ,...,1 .  The theorem is proved. 

The linear independence property plays the same role in solving problem (2.2)-(2.3). Theorem 2 

below is simply derived from a more general theory developed in [7,8]. 

Theorem 2.  Let *x  be a stationary point of problem (2.2)-(2.3) and let gradients 

nixf i ,...1),( *  be linearly independent. Then *x is a point of global minimum and 0*)(2 xF . 

Proof. Write down the Lagrange function 



n

i

ii xfxFxL
1

)()(),(   and the necessary 

optimality conditions: 

1. stationarity   

                   ,0)()1()()(),(
1

**

1

***** 



n

i

ii

n

i

iix xfxfxFxL                    (2.5) 

2. complementarity 

                                                 ,,...1,0)( ** nixf ii                                                          (2.6) 

3. feasibility 

                                                  ,,...,1,0)( * nixf i   
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where nii ,...,1,0*   are the optimal Lagrange multipliers corresponding to 
*x . Since 

nixf i ,...1),( *  are linear independent and due to stationarity conditions (2.5), we have 

nii ,...,1,1*  . Substituting the optimal values of Lagrange multipliers in complementarity 

conditions (2.6), we obtain the desirable result .,...,1,0)( * nixf i   The theorem is proved. 

It should also be noted that the linear independence condition is essential for the Newton method as 

well. Otherwise, the auxiliary system of linear equations would not have a unique solution. The 

difference between the Newton method (and its modifications) and the optimization approaches based 

on problems (2.1) and (2.2)-(2.3) consists in the following. For the Newton method, we must have the 

linear independence property at every iteration 
kx , while for the optimization approaches we need the 

linear independence only at the limit (stationary) point *x . In what follows, a stationary point that 

satisfies the linear independence condition will be called a regular stationary point. 

The advantage of problem (2.1) is that it is an unconstrained problem. So, we do not have to find a 

feasible starting point. A local search algorithm can start from an arbitrary given point. Such a 

possibility is practically essential for the multistart procedure used below. 

The advantage of problem (2.2)-(2.3) is that its objective does not contain squared terms. This 

property is important from the numerical point of view. However, problem (2.2)-(2.3) is a constrained 

problem with nonconvex and possibly disconnected feasible set. So, we have to provide a feasible 

starting point for a local search algorithm. It is well known that finding a feasible point of a nonconvex 

set is a global optimization problem itself. However, in our case, we take advantage of the description 

of X . Take an arbitrary point 
nRx 0

and calculate values ,,...,1)),(( 0 nixfsign ii  where 

)(zsign is the sign function of scalar z , i.e. 1)( zsign when 0z , 0)( zsign when 0z and 

1)( zsign when 0z . Introduce functions )()(
~

xfxf iii
 , if 0i and )()(

~

xfxf ii
 , if 

,0i  ni ,...,1 .  Then .,...,1,0)( 0
~

nixf
i

  Hence, 
0x  is a feasible point of set  

                                             }.,...,1,0)(:{
~~

nixfRxX
i

n                                               

Define a new objective function  

                                                                



n

i

i xfxF
1

~~

).()(  

Consider the problem of minimizing 
~

F over .
~

X  It is of the same type as problem (2.2)-(2.3), so 

any regular stationary point 
~

x  of the latter problem satisfies equalities 0)(
~~

xf i , therefore 

nixf i ,...,1,0)(
~

 .  

Let us describe now a simple local search procedure based on the ideas given above. 

I. Take a point
nRx 0

. 

II. Calculate scalars nixfsign ii ,...1)),(( 0  . 

III. Apply a local search algorithm for the problem of minimizing function 
~

F over set 
~

X using 
0x as a starting point. 

IV. If a regular stationary point is found, then it is a root of the system (1.1). 

 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042007

IOP Publishing

doi:10.1088/1757-899X/537/4/042007

4

 

 

 

 

 

 

Several local search solvers can be used at step III. The question of choosing a solver is discussed 

in Section 3. 

Let us now describe important, from the computational point of view, reformulations of problems 

(2.1) and (2.2)-(2.3). Introduce auxiliary variables is , ni ,...1  and reformulate problem (2.1) in the 

following way 





n

i

n

iii
sx

Rxnixfss
1

2

,
}.,,...1),(:{min                                             (2.7) 

In problem (2.7) only variables is , ni ,...,1 are squared, while functions if , ni ,...,1 remain 

unchanged. From the mathematical point of view, problems (2.1) and (2.7) are equivalent. Providing a 

feasible starting point for (2.7) is not difficult: just take any
nRx 0

, calculate )( 00 xfs ii  , 

ni ,...,1 , and pair ),( 00 sx is a feasible point for (2.7). 

The same can be done for problem (2.2)-(2.3). The result is as follows 





n

i

iiii
sx

nisxfss
1

,
},...,1,0),(:{min .                                            (2.8) 

Again, from the mathematical point of view, problems (2.2)-(2.3) and (2.8) are equivalent.  

Nevertheless, the computational results for problems (2.1) and (2.7) are different, and so are the 

computational results for problems (2.2)-(2.3) and (2.8).  

3.  Comparative testing 

The goal of the comparative testing was to assess effectiveness of finding roots of system (1.1) by 

means of local search algorithms only, without involving any global optimization technique. We 

compared computational effectiveness of the Newton method (Newton), damped Newton method 

(dNewton), and five local search solvers based on problems (2.1), (2.2)-(2.3), (2.7), and (2.8) 

correspondingly. 

Let us briefly review the Newton method and the damped Newton method used in the testing. Their 

iterative descriptions are as follows. 

The Newton method: ,....1,0),()( 11   kxfxJxx kkkk
, where )( kxJ  is the Jacobian of 

functions if , ni ,...,1 calculated at 
kx . 

The damped Newton method: ,....1,0),()( 11   kxfxJxx kk

k

kk  Parameters k are 

determined the following way. If  )()( 1 kk xfxf 
, then 1k , where w is the Euclidean norm 

of vector 
nRw  and

T

n xfxfxf ))(),...,(()( 1 . If )()( 1 kk xfxf 
, then k is sequentially 

decreased by the rule kk     until condition )()( 1 kk xfxf 
 is met, ).1,0(  In our 

testing, 75.0  and  10  .   

For all the approaches, the same, randomly chosen initial point 
0x is used. 

The testing was performed for randomly generated systems of quadratic functions 

                                      ,,...,1,)( nirxcxQxxf i

T

ii

T

i                                                      (2.9) 

where iQ  are arbitrary nn  matrices, 
n

i Rc  are arbitrary vectors, and scalars ir  are selected to 

be such that the generated system (1.1) with functions (2.9) has at least one root. 
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The testing was done in GAMS system [9], demo-version 24.7.4. The computations were 

performed on a 4-core laptop Intel Core i7/2.3 GHz/ 8GB. The following stopping criterion was used: 

)( kxf  with 
410 . The starting point was the same in all the trials.  

 First, we selected the best solver for local optimization of problems (2.1), (2.2)-(2.3), (2.7), and 

(2.8). The results are given in table 1. Five solvers used were conopt, minos, ipopt, snopt, and knitro 

[9]. The number of randomly generated systems (2.9) was 30, the number of variables 30n .  

The numbers in the body of table 1 show how many test problems of each type were solved by 

each solver. For example, solver conopt solved 15 problems of type (2.2)-(2.3) out of 30. This means 

that 30 random systems (2.9) were created and converted to problems of type (2.2)-(2.3),  then 15 of 

them were solved to global optimality, i.e. a root was found in 15 systems out of 30. From table 1, we 

can make the following conclusions: solver conopt was the most successful for problems (2.1) and 

(2.2)-(2.3), while solver ipopt was the best for problems (2.7) and (2.8).  

Table 1. Number of problems globally solved. 

Problem/Solvers conopt minos ipopt snopt knitro 

(2.1) 16 16 12 0 12 

(2.2)-(2.3) 15 11 0 10 9 

(2.7) 16 16 22 0 18 

(2.8) 1 11 16 10 12 

The overall best result was shown by solver ipopt for type (2.7) problems. It has found a root in 22 

cases out of 30. 

Next, a testing was performed for different dimensions. The results are presented in table 2. 

Table 2. Testing results for different dimensions. 

Approach/Dimension n=5 n=10 n=20 n=30 

(1.1), Newton  0 1 1 1 

(1.1), dNewton 0 2 2 2 

(2.1), conopt 23 15 21 14 

(2.2)-(2.3), conopt 23 12 11 7 

(2.7), ipopt 26 20 26 21 

(2.8), ipopt 25 21 15 14 

The approaches are listed in the first column of table 2. Notation “(1.1), Newton” means that the 

Newton method was used to solve a system (1.1); “(1.1), dNewton” means using the damped Newton 

method for a system (1.1); “(2.1), conopt” means applying solver conopt to a problem of type (2.1); 

“(2.2)-(2.3), conopt” means applying solver conopt to a problem (2.2)-(2.3); “(2.7), ipopt” means 

applying solver ipopt to a problem (2.7); “(2.8), ipopt” means applying solver ipopt to a problem (2.8).  

For each of the four chosen dimension, 30 problems were randomly generated. The body of the table 

consists of the numbers of successful runs of the corresponding algorithms on problems of each of the 

dimensions.  Consider, for example, 30n .  

For this dimension, the Newton method solved 1 system out of 30, the damped Newton method 

solved 2 systems, solver conopt solved 14 problems out of 30 of type (2.1) to global optimality, and so 

on. Solving problem (2.7) by solver ipopt turned out to be the most successful. All the solvers were 

used with the default options.  

A natural generalization of the local methodology consists in combining a local search with the 

multistart technique and parallelization. A local search was performed by solver ipopt for problems of 

type (2.7). Table 3 shows the results of the testing.  
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Table 3. Testing results for a 

combination of a local search with 

multistart and parallelization. 

n s ss dss t 

5 30 23 7 0:00:01.126 

5 50 39 8 0:00:1.916 

5 70 53 8 0:00:03.101 

5 100 82 8 0:00:05:134 

5 150 120 8 0:00:06.807 

10 30 23 12 0:00:01.297 

10 50 23 18 0:00:02.148 

10 70 49 21 0:00:03.642 

10 100 66 26 0:00:05.205 

10 150 88 28 0:00:07.926 

15 30 13 12 0:00:01.583 

15 50 23 21 0:00:02.807 

15 70 32 27 0:00:03.304 

15 100 44 33 0:00:05.880 

15 150 68 44 0:00:08.895 

20 30 11 10 0:00:06.633 

20 50 21 19 0:00:04.823 

20 70 29 26 0:00:10.364 

20 100 39 33 0:00:11.903 

20 150 58 58 0:00:15:787 

25 30 11 11 0:00:07.535 

25 50 20 20 0:00:13:176 

25 70 27 27 0:00:17.154 

25 100 35 35 0:00:17:447 

25 150 55 55 0:00:34.528 

30 30 10 10 0:00:10.452 

30 50 19 19 0:00:18.552 

30 70 26 26 0:00:30.910 

30 100 33 33 0:00:36.476 

30 150 49 49 0:00:49.930 
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 In table 3, n  denotes a dimension, s - the number of multistarts, ss - the number of successful 

multistarts, dss - the number of different roots among all roots found, t  - time, 

hours:minutes:seconds. Successful multistarts are those that resulted in a root of the system. 

Otherwise, a multistart is unsuccessful, what means that the local search procedure has stopped at a 

stationary point that was not a root of the system.  Starting points were chosen randomly, all 

s optimization problems were solved in parallel. All computations were performed in GAMS. 

4.  Conclusion  
Our preliminary testing shows that the suggested optimization approach can be successfully used for 

solving system (1.1). The advantage of the approach consists in using only local search methods. If the 

Assumption made in section 1 is not guaranteed, then the problem of verifying consistency of system 

(1.1) arises. The most difficult task then is to prove that system (1.1) does not have solutions. In this 

case, global optimization methods must be used. Nevertheless, the suggested approach can be used as 

an offhand and easy tool to find solutions of (1.1). Further investigations and experiments will be 

performed for a wider range of tests and for higher dimensions.  
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