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Abstract. The object of research in this paper is stochastic multistage systems, the service 

process in which a set of series-parallel operations with a random duration of service is 

performed. The subject of the study is the random variable which is the service time of the 

entire application. The aim is to evaluate the analytical capabilities to accurately assess the 

characteristics of the studied value. The possibility of analytically obtaining the characteristics 

of a random variable is investigated, as a result of which a conclusion is made about the 

usefulness of connecting numerical apparatus. Thus, the features of estimating the numerical 

characteristics of a random variable describing the duration of a complex of series-parallel 

operations are analyzed.  

1.  Introduction 

The process of functioning of complex service systems for the execution of a complex series-parallel 

operation for the maintenance of the application is investigated. The execution time of each individual 

operation is a random variable. It is necessary to estimate the duration of service of the entire 

application. This task belongs to a class of network planning and management (project management) 

tasks. For tasks with a random duration of work, the PERT (Program Evaluation and Review Technic) 

method has been developed, which allows not only the execution time of individual operations to be 

estimated, but also the duration of maintenance of the entire application [1, 2, 3]. 

However, studies have shown that estimations of the method do not always take place in real 

conditions. In this regard, PERT formulas will also have some error. To minimize this error, it is 

necessary to develop a new analytical tool that allows the numerical characteristics of the desired 

random variable to be estimated with the highest possible level of accuracy. 

This paper describes the problem statement; the inaccuracy of estimates of the PERT method is 

shown experimentally, and this will increase in the presence of several critical paths. The following is 

a description of the duration of the service, which is the maximum of random variables, each of which 

represents the total time of work and is set in a certain way. Having described the numerical 

characteristics of this random variable, we analysed the possibilities for analytically finding the 

mathematical expectation and variance. 

 

2.  Statement of the problem and its features 

A multi-stage system, the input of which receives a stream of applications, is considered. Each 

application requires the implementation of a set of mutually dependent (series-parallel) operations for 
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its service. Each operation is defined by its duration, which is a random variable, and mutual 

dependence (a set of previous or subsequent operations). It is required to estimate the numerical 

characteristics (expectation and variance) of a random variable describing the duration of service of 

the whole complex of operations.  

Let us analyse the features of this problem. In the deterministic case where the execution time of 

each task is known in advance and unchanged, the value of the maintenance duration can be estimated 

as follows: 





Kwk

k fact

k

tT
:

     (1) 

Here K is the set of operations forming the critical path; wk is the regular operation belonging to the 

critical path; tk is the duration of this operation.  

In the stochastic case, there is uncertainty associated with the possibility of changing the critical 

path in the maintenance process. Let us explain this with a simple example. Consider the network 

graph shown in figure 1. 

 

Figure 1. The example of the network graph. 

 In this figure, the letters denote the operations, and the numbers denote their approximated 

duration (estimate of mathematical expectation). As can be seen from this figure, the critical path is 

determined by the operations A, B, and C. However, if, for example, operation C is completed two 

units earlier, then operations D and E will be critical. Thus, it is impossible to determine in advance 

either the critical path or the set of operations lying on it. 

In addition, the specificity of the duration of operations and their mutual dependence can be such 

that the problem can have two critical paths. In this case, there are some difficulties associated with 

estimating the numerical characteristics of the desired random variable. 

Let us analyse the most common method of solving this problem, PERT. This method is intended 

for the formation of service schedules in stochastic systems in interdependent work. Let ξ1,…,ξk be the 

random variables describing the operations that stand on the critical path. Although all the operations 

in the system are dependent, it is assumed that the duration of any operation does not affect the 

duration of other operations. Hence the random variables ξ1,…,ξk are independent. The calculation 

formulas of PERT for the expectation and variance of the desired duration are as follows: 

     kMMM   ...1 ,    (2) 

     kDDD   ...1 .     (3) 

   As noted earlier, there may be cases where the network graph will contain two or more critical 

paths. In this case, the formula (2) will remain suitable for calculating the mathematical expectation 

(since all critical paths will have the same mathematical expectation). However, the formula for 
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variance will change. In [1], the variance is estimated as the maximum of all variances, each of which 

will be calculated for its critical path: 

     )max( 1 nD,,...,DD   .       (4) 

Here ξ is the desired value; n is the number of critical paths; η1,…, ηn are random variables 

representing the total duration of all operations in the path 1,…n respectively.  

 

3.  Experimental estimates of service duration 

Let us conduct an experiment, the purpose of which is to estimate the duration of service if it is 

necessary to perform a set of series-parallel operations. At the start of the experiment, the network 

graph, which is a set of mutually dependent operations, will be submitted. It is assumed that the 

duration of each operation is distributed according to the law of beta [4]. The rationale for this 

assumption is presented in [5]. The aim of the experiment is to obtain a sample, each element of which 

is the duration of the service application (when drawing all random variables describing the duration 

of individual operations).  

Based on this sample, numerical characteristics such as expectation (sample mean) and variance 

(sample variance) are estimated. The obtained results are compared with the expected analytical 

results calculated by formulas (2) and (3) (or (4) with equal variances).  

The experiment includes many independent experiments, in each of which: 

 

 the random variables distributed according to the beta law are simulated, the aim of which is 

to simulate the performance of operations; 

 the Xi value is determined, which is the service time of the entire application (the moment of 

completion of the last operation, taking into account their mutual dependence). 

 

At the end of the test series, the sample mean and the sample variance of random variables Xi are 

calculated.  

Consider the simulation of random variables distributed according to the law of beta in detail. The 

input of the corresponding subroutine receives the expectation and variance of a random variable. 

Firstly, the parameters p and q of the beta distribution are determined. The following formulas were 

obtained in [6]: 

          
   abD

aMDaMMb
p









2

    (5) 

and 

          
   abD

MbDaMMb
q









2

.    (6) 

The second stage consists in obtaining a random variable with the parameters (5) and (6). 

Provided below, without loss of generality, is a small fragment of the results for the trivial case 

when the project maintenance is given by a set of two parallel operations. In the case where the 

expected value of these operations is the same, the results are as shown in table 1. The table presents 

the results for random variables distributed according to the beta law with expectation M and the 

variances D1 and D2, respectively. Based on formulas (2) and (4), the expectation and variance of the 

service time of requests are M*
p and D*

p. Similar characteristics estimated using sample values are M*
s 

and D*
s. 
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Table 1. A fragment of the results of the experiment for 

two random variables. 

Initial data Planned 

characteristics 

The actual 

characteristics 

M D1 D2 M*
p D*

p M*
s D*

s 

15 2,97 3,78 15 3,78 16,05 2,449 

12 0,33 0,22 12 0,33 12,33 0,23 

13 0,75 0,5 13 0,75 13,44 0,432 

16 3 2 16 3 16,90 1,795 

16 3 2 16 3 16,90 1,767 

Based on the values from this table, it is obvious that the actual mathematical expectation turned 

out to be significantly higher than planned, while the variance was lower. 

Let us consider the result of three parallel operations. Suppose that one of the three random 

variables has the expected value of 5.5, and the other two – 5. According to the PERT method, the 

expected value of the resulting random variable is 5.5. Let us present a fragment of the results of 

experiments, which differ in terms of the range of random variables (table. 2). 

Table 2. A fragment of the results of the experiment 

for the three random variables. 

Planned 

characteristics 

The actual 

characteristics 

M*
p D*

p M*
s D*

s 

5,5 0,6944 5,9454 0,6216 

5,5 0,4444 5,7971 0,2345 

5,5 1 6,0323 0,3399 

5,5 1,7778 6,3417 0,9126 

5,5 1 6,0089 0,472 

5,5 0,6944 5,7223 0,2309 

5,5 1 5,8526 0,4434 

5,5 1 5,8805 0,2962 

5,5 1,3611 6,0444 0,4638 

5,5 1 5,9636 0,5404 

We will conduct an experiment in similar conditions except for the values of the mathematical 

expectations of random variables. Let now two random variables have mathematical expectation 5.5, 

and one – 5. This will be similar to the case where the network graph has two critical paths. The 

results are shown in table 3. 

Table 3. A fragment of the results of the experiment 

for the three random variables. 

Planned 

characteristics 

The actual 

characteristics 

M*
p D*

p M*
s D*

s 

5,5 0,6944 6,113 0,5553 

5,5 0,4444 5,9484 0,2081 

5,5 1 6,177 0,3074 

5,5 1,7778 6,5067 0,8757 

5,5 1 6,1602 0,3931 

5,5 0,6944 5,8768 0,3048 

5,5 1 6,0245 0,3709 
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5,5 1 6,0634 0,3505 

5,5 1,3611 6,2112 0,4066 

5,5 1 6,1143 0,4878 

 

Compared to the previous case, it can be seen that the actual expectation is increased, and the 

variance is reduced. 

Thus, on the basis of experimental data, fragments of which are presented in tables 1, 2 and 3, the 

following conclusions can be drawn: 

 

 the evaluation of the duration of the service request, proposed by the PERT method, is lower 

than the actual duration of service; 

 the variance of the random variable describing the service duration, proposed by the PERT 

method, is higher than the actual variance; 

 by increasing the number of critical paths, the expected expectation of a random variable 

describing the duration increases (as opposed to the PERT method); 

 by increasing the number of critical paths, the expected variance of the random variable 

describing the duration decreases (as opposed to the PERT method). 

 

Thus, it is necessary to develop a mathematical apparatus to obtain more accurate estimates 

compared to the PERT method. 

 

4.  Analytical description of the random variable under study 

In this part, an analytical description of a random variable representing the service duration for 

stochastic systems will be given.  To do this, consider all the paths of the network graph (i.e. all the 

chains that allow you to move from the initial to the final state). Each path will be determined by a 

variety of operations. Let ξi,  i=1,…,n  be a random variable that determines the total duration of all 

work that stands in the way of i. Then the required random variable ξ can be described as follows: 

 n ,...,max 1 .     (7) 

Thus, the problem can be formulated as follows. Let there be many random variables. It is 

necessary to find the expectation and the variance of the random variable, which is given by the 

formula (7). 

Similar problems are considered in [7, 8, 9]. However, the principal difference of the studied 

problems, which relate to the theory of extreme values, is the identity of random variables included in 

the formula (5). The case where each individual random variable has its own distribution interval and 

its own parameters has not yet been investigated. 

Consider a particular problem. Let 

),max( 21   .     (8) 

Random variables are distributed in the intervals [a1, b1] and [a2, b2], respectively. It is necessary to 

find the expectation and variance of a random variable (8). According to the formulas of probability 

theory, we obtain [7]: 

      
1

1

2

2

21
),max(

b

a

b

a

dxdyyfxfyxM            (9) 

and 

          22
1

1

2

2

21
),max(   MdxdyyfxfyxD

b

a

b

a

   .    (10) 
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It is known that the intervals [a1, b1] and [a2, b2] are overlapping, i.e. b2>a1 and b1>a2. Without loss 

of generality, suppose that a2<a1. Then: 

 

         

  dydxyfyx

dyyfyxxfdxdyyfxfyxM

b

a

b

a

a

a

b

a

b

a


















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2

1

2

1

1

1

2

21

1

1

2

2

21

),max(

),max(),max(





   (11) 

Next, it is necessary to define the maximum function: 










yxy

yxx
yx

,

,
),max(      (12) 

and divide the integral into components depending on which of the arguments is greater.  

Let us proceed to the definition of densities in formulas (9) and (10). Since each random variable ξi, 

i=1,2, is a set of consecutive operations, it will be determined by the formula: 

ikii   ...1 .    (13) 

In [13] it was shown that the sum of beta values can be approximated by the beta value. In 

particular, if random variables 1,…,n have a beta distribution in the intervals [a1, b1], [a2, b2], …, [an, 

bn] with parameters (p1,q1), (p2,q2), …, (pn,qn) respectively, then the final density will have the form:  

 
   

  1

11










qp

qp

ab

xbax
xf .    (14) 

In [6] the parameters p and q of the given random variable are found, as well as the interval [a,b] in 

which it is defined. Therefore, we assume that the distribution density of the random variable (11) has 

an estimation that is accurate to the parameters. 

Next, consider the case of n distinct paths. In general, let a random variable  be a function of 

random variables 1,…, n. We assume on the basis of [13] that each of these random variables has a 

beta distribution in the interval [ai,bi]. Then its numerical characteristics will be determined as follows 

[10]: 

  
n

n

b

a

nn

b

a

dxdxxfx,...,xM ...)()max(... 11

1

1

     (15) 

and  

      211

2

1 ...)()max(...
1

1

  Mdxdxx,...,xfx,...,xD nn

b

a

n

b

a

n

n

    (16) 

In comparison with formulas (7) and (8), the following difficulties arise in the n-dimensional case: 

 

 the function of the module of several arguments becomes much more complicated (from the 

point of view of integration); 

 it is obvious that the density function will become more cumbersome. 
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Next, we find the distribution density of the random variable ξ described by the formula (5). Since 

ξ1,…,ξn are independent, the distribution function of ξ will have the following form: 

 

         

     n

nnnn

xFxFxF

xPxPxPxxxPxPxF

n

 





...

....(),...,,

21

22112211

21

  (17) 

Taking the derivative, we obtain: 

                   111121 111221
............ 
 nnnn xFxFxfxFxFxfxFxFxfxf

nnnn 
. (18) 

We substitute in the formula (17) the values of the function and density of beta-distribution. The 

first term is recorded: 

     
   

 
   

   
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2
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1 1
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p q x
p q

n p q

a

x
p q

n np q p q

a

x a b x
f x F x F x t a b t dt

b a

t a b t dt
b a b a
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 

 

 

 

   

  
        



      
 





  (19) 

The rest of the terms will have the same form. As can be seen from the results, the analytical 

approach to finding the numerical characteristics of a random variable (5) is associated with a number 

of difficulties. They are called in particular: 

 

 cumbersome expressions (19) (as components of integral expressions (15) and (16)); 

 difficulties arising when integrating the density (14); 

 difficulties arising in the analytical description of the function of the maximum of n values.  

 

In this regard, it can be concluded that to find the numerical characteristics of the formulas (15) and 

(16) it is necessary to connect a numerical apparatus.  

 

5.  Conclusions 

The aim of the work was to describe a random variable characterizing the duration of servicing a 

complex of series-parallel operations and finding its numerical characteristics. The main results are 

listed below. 

The existing approach for the estimation of numerical characteristics of service duration in 

stochastic systems is analysed by means of a computational experiment. Compared to estimates, the 

PERT method revealed that the actual expectation exceeds the estimated valuation, and the variance is 

lower than the planned evaluation. The results indicate the need to develop approaches for estimating 

the numerical characteristics of the service duration, characterized by high accuracy.  

The analytical description of the investigated random variable based on the use of the probability 

theory apparatus is proposed. In particular, it was shown that it can be described by formula (7). 

Analytical approaches to finding the numerical characteristics of the described random variable are 

investigated. In general, they are described by formulas (15) and (16). As a result, it is concluded that 

it is advisable to search for numerical approaches (or a combination of numerical and analytical 

approaches) to solve this problem. 

References 

[1] Kofman A and Debazey G 1968 Network planning methods 517 

[2] Ma W, Che Y and Huang H 2016 Resource-constrained project shceduling problem with 

uncertain duration and renewable recources International Journal of Machine Learning and 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042005

IOP Publishing

doi:10.1088/1757-899X/537/4/042005

8

Cybernetics 7(4) 613-21 

[3] Artigues C, Demassey S and Neron E 2010 Resource-Constrained Project Shceduling: Models, 

Algorithms, Extensions and Applications 308 

[4] Gupta A and Nadarajah S 2004 Handbook of Beta Distribution and Its Applications 579 

[5] Golenko-Ginzburg D, Burkov V and Ben-Yair A 2011 Planning and controlling multilevel man-

machine organization systems under random disturbances 448  

[6] Oleynikova S 2013 Computer experiment for the analysis of the distribution law of the random 

quantity that determines the duration of the project in problems of network planning and 

management Economics and Management of Control Systems 9(3) 90-6   

[7] Gumbel E 1965 Statistics of extrems 452 

[8] Nevzorov V 2000 Records: mathematical theory 256 

[9] Haan L De and Ferreira A 2006 Extreme value theory 418  

[10] Ventcel E 1999 Theory of probabilities 576  

[11] Johnson N, Kotz S and  Balakrishnan N 1995 Continuous univariate distributions 2 752 

[12] Whittaker E 2012 The Calculus of Observations – A Treatise on Numerical Mathematics 412  

[13] Oleinikova S and  Kravets O 2013 Approximation of the distribution law of the sum of random 

beta values International Journal of Information Technologies and Security 9(3) 53-64 


