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Abstract. Sentence packaging is an important task in natural language text generation which 

could be treated as a particular kind of a community detection problem. We propose an 

approach based on genetic algorithm and predictive machine learning models to advance it. 

The approach allows handling large ontological and semantic structures in a form of a graph to 

produce well-formed sentences. The results of experiments showed that the genetic algorithm 

optimizing the modularity measure gives comparable results to ones achieved by a traditional 

community detection algorithm and outperforms it on a collection of relatively short texts. The 

design of an approach allows for further introducing linguistic characteristics into a fitness 

function that gives it a high potential to increase the quality of detected packages while taking 

into account the specificity of the domain. 

1.  Introduction 

One of the main tasks in natural language text generation (NLTG) consists in converting structured 

non-linguistic data kept in a form of a graph (i.e. ontological or semantic structures [1-4], e.g. RDF-

graphs which combine single RDF-triples with cross-referenced elements) to a coherent text. The 

following basic steps in the generation process are generally highlighted [5]: 

 

 Content determination, i.e. selecting the part of the data in bits of information which should be 

verbalized with a text. 

 Text structuring, i.e. determination of the order in which information should appear in the text. 

 Sentence aggregation, i.e. combining multiple messages into larger sentences to have 

potentially more fluid and readable text. 

 Lexicalization, i.e. choosing an appropriate lexis for the sentences. 

 Referring expression generation, i.e. selecting word or phrases to communicate sufficient 

information to distinguish one domain entity from other domain entities. 

 Linguistic realization, i.e. forming a well-formed sentence. 

 

The mentioned steps are often considered separately. The approaches handling these steps are 

usually based on a combination of hand-crafted rules and machine learning models. Pure rule-based 

methods were mostly investigated in early works in NLTG devoted to English as an analytic language. 

For example, in [6], a rule-based method was offered for generating natural language texts from 

business process models. Recently, with developing the machine learning techniques, fusional 
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languages, such as Russian or Spanish, began to be covered in studies more often. In [7] an inflection 

module to improve the naturalness and expressivity of obtained texts in Spanish on the lexicalization 

stage was offered. This module inflects the verbs using an ensemble of machine learning models. The 

other types of words are inflected using hand-crafted rules. 

Some neural network architectures allow creating the whole end-to-end NLTG frameworks in an 

unsupervised manner skipping some common steps in the generation and still achieve a relatively high 

quality of generated texts. Li et al. [8] proposed a hierarchical LSTM autoencoder that generates a 

latent representation for a text from embeddings for sentences and words and then uses this embedding 

to restore the original text. They also empirically showed that neural models are able to encode texts in 

such a way that preserve syntactic, semantic, and discourse coherence. In [9] researchers proposed a 

deep ensemble of autoencoders with attention layer for reports generation. They introduced the 

semantic reranking approach to infer the output of the ensemble. Variational autoencoders are the 

most promising approach in this direction because they allow including a priori linguistic information 

in the model; cf., e.g., [10] describing hierarchical latent variable recurrent network or [11] proposes a 

hybrid variational autoencoder architecture that includes convolutional, deconvolutional, and recurrent 

components. 

Despite the recent breakthrough in separate subtasks in NLTG, it becomes clear that neither 

combining the detached approaches which cover just single generating stages nor end-to-end 

frameworks ignoring some stages allow reaching all the goals set in a traditional generation pipeline to 

obtain satisfactory text. Therefore, a tendency toward carrying out at least some steps simultaneously 

is being established [12-14]. 

In this paper, we tackle a task called sentence packaging [15] that consists in decomposing the 

initial graph containing the data to be verbalized into connected subgraphs which would include all the 

information sufficient for translating them into well-formed sentences. This step partially touches 

content determination, text structuring, and sentence aggregation avoiding unnecessary predefining the 

elementary statements with a subsequent positioning and grouping. Many criteria apply to the design 

of packages including language, style, topic, the presence of the obligatory arguments of predicative 

vertices, linguistic restrictions of co-reference (in case several subgraphs share the same vertices), etc. 

In the current work, we focus only on the formal criterion implying that each package should be in 

itself a connected graph. The rest of the criteria are taken into account implicitly while trying to 

recover the ground truth sentences which satisfy them a priori. 

In graph-theoretical terms, sentence packaging can be considered as an approximation of dense 

subgraph decomposition, which is a very prominent area of research in graph theory. It has been 

studied in the context of numerous applications, including biomedicine [16], web mining [17], 

influence analysis [18], acoustic source separation with use of deep clustering approaches [19], 

community detection [20], etc. The latter application and corresponding methods for extracting 

communities are of particular interest for the task since they are often designed to work with extremely 

large graphs and some of them may take into account additional features of nodes. Some methods 

could separate subgraphs even if they overlap, that is an often case in the generation when there is a 

need to duplicate some nodes and split a complex sentence into several smaller ones in order to have a 

coherent text. 

The traditional community detection methods [21, 22] are based on optimizing some measure 

related to the network structure by surveying a graph and grouping the nodes in such a way that 

subsequently increases the objective measure. It was showed previously that these methods are 

applicable to sentence packaging and give promising results [23]. Further, to improve the quality of 

packages some additional to network structure features should be taken into account. They may 

include linguistic characteristics of nodes, parental relations, type of relations, type of arguments and 

possible combination of them in a sentence. The objective function mainly reflected the density of 

nodes inside and between communities should be changed regarding new linguistic features. However, 

the modifying the function is not enough since there is no guarantee the design of algorithms will 
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allow them to investigate the search space in the same efficient way they did being tuned for 

optimizing network measure. 

To overcome the mentioned problem and to avoid adapting existing algorithms for each particular 

objective function being developed while looking for an effective one, the evolutionary algorithms 

(EA) might be chosen as an appropriate approach for a detection of different communities with a 

specific structure and distinct properties. The main advantage of EA for the sentence packaging task 

consists in a possibility to carry out the search of suboptimal solutions without the necessity to have 

knowledge about the search space that depends on the function to be optimized. Moreover, genetic 

algorithm (GA) in particular has been already used in several works on community detection [24, 25] 

showing a competing performance in comparison to traditional approaches. 

The aim of this work consisted in checking whether it is possible to apply a genetic algorithm to 

carry out sentence packaging. We show that using a predicted number of packages and the network 

modularity measure [26] as a fitness function allows obtaining sentences highly corresponding to the 

ground truth ones. That gives us an opportunity to customize the objective function by introducing 

linguistic information in order to improve the quality of packaging. The remainder of the paper is 

structured as follows. In section 2, we describe the developed method for graph decomposition. 

Section 3 provides the data for English and Russian languages for training the models and testing the 

method. Section 4 covers experiments we carried out. In Section 5, we provide the results of 

experiments. Section 6 is devoted to the discussion of the outcomes of the work. In Section 7, we draw 

some conclusions and suggest future directions of research. 

 

2.  Method 

We propose a method that consists of the combination of a linear regression model and a genetic 

algorithm. The linear regression model is trained to predict the approximate number of packages for a 

given graph while the genetic algorithm takes this number to reduce the search space and decomposes 

a graph into densely connected subgraphs. To predict the most probable number of sentences the graph 

should be decomposed into, we used different linguistic features within a ridge regression model 

similar to the work [23]. For Russian, we considered frequencies of the following elements of the 

graphs as features for the prediction: tokens, predicates, arguments, syntactic roots, syntaxemes [27], 

subjects, and objects. For English, the following features were used: tokens, edges, predicates, 

arguments, roots, VerbNet nodes, and different relation types from PennTreebank (Argument1, 

Argument2, Elaboration, NonCore, and Set) [28]. The predicted number of sentences might optionally 

influence the initialization phase of GA. There is a lot of works in evolutionary computation for 

community detection which often offer to handle the task as multiobjective optimization, suggest 

different genotype encoding schemes (some of them allow detecting overlapping communities), 

different crossover and mutation operators, and some additional modifications [29]. They have various 

advantages and drawbacks, however, we did not focus on them because the detected communities do 

not necessarily have the same quality if they are treated as sentence packages. Therefore, we prefer to 

have a version with a small number of parameters to easier check if there is a combination proper for 

the defined task. 

We chose one of the first genetic algorithms designed for community detection [30] as a core 

algorithm for graph decomposition. It optimizes the network modularity measure proposed by Girvan 

and Newman [26] that has been already successfully used for sentence packaging in [23]. The measure 

is a metric for assessment of partitioning a network into communities which is defined as: 

 
i

iii aeQ 2
                                                              (1) 

where i is the index of the communities, eii is the fraction of edges that connect vertices inside the 

community i (i.e., within-community edges) and ai is the fraction of the edges that connect a vertex to 

vertices in community i. If the number of within-community edges is no better than random, Q = 0. 

Values approaching Q = 1, which is the maximum, indicate strong community structure. 
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The first reason for selecting the algorithm is the highly frequent convergence to the correct 

solution on classical tasks in community detection shown in [26]. The second reason is a relatively 

small number of parameters needed to be tuned. The third reason is the ability of the algorithm to 

handle large graphs (at least up to 100,000 nodes) that allows planning to introduce complex objective 

functions which might take a long time to be computed. Moreover, it does not require the exact 

number of communities as an input that is also an advantage because the number of sentences to be 

used for verbalization of the data is unknown. 

The original algorithm in [26] has several peculiarities in comparison to the standard GA. First of 

all, a genotype is represented as an array of positive natural numbers which assign each node of the 

graph to some community with the corresponding identifier. Random initialization of population is 

extended by taking several nodes (the percentage of nodes to be taken is an additional parameter of the 

algorithm that should be tuned) and assigning their identifiers to their neighbors. Another distinction is 

in the implementation of cross-over operation. The nodes from a source chromosome corresponding to 

the same randomly selected community identifier are transferred to the destination chromosome. The 

mutation is performed by placing a node into a random community. Additional operation called 

“clean-up” consists in changing the identifier of a node and its neighbors to the identifier belonging to 

the majority of neighbors in case the relevant number of nodes forming the majority is higher than 

some predefined threshold (the threshold and the number of nodes to be taken for cleaning are two 

other new parameters requiring tuning). 

Since authors of the original algorithm have not provided preferable values for new parameters, we 

ran several experiments and defined the values based on empirical observations as follows: the 

percentage of nodes to be taken during initialization equals 70%, the number of nodes to be considered 

during cleaning phase is equal to 30% with a threshold for the majority of neighbors belonging to the 

same community equal to 70%. We selected tournament selection operator and used the same 

measure, network modularity, as an objective function.  

Although the algorithm could have been run “as is”, the following questions related to the 

peculiarities of the domain arose: a) whether the algorithm has to be applied to the whole graph of the 

text or to each connected subgraph separately (it was shown previously [23] that some traditional 

graph decomposition algorithms work better being applied to the whole graph of text rather than to its 

isolated subgraphs); b) whether we should limit the possible number of packages by reducing the 

number of identifiers used for generating the initial population or leave the decision of how many 

sentences to obtain fully to the genetic algorithm; c) whether we should return obtained sentences even 

if some of them are in a form of disconnected subgraphs or treat such subgraphs as individual 

sentences. To answer these questions, we introduced three additional parameters to the algorithm: a 

flag respondent for the preliminary splitting of the graph, maximum possible number of community 

identifiers to be used for initialization, and a flag respondent for splitting resulting sentences into 

isolated subgraphs. The second parameter might be either the total number of nodes or the most 

probable number of sentences predicted with the linear regression model. Regarding this, we created 

several instances of the algorithm with different values of parameters to find the proper combination 

of them. 

 

3.  Data 

The graphs we utilized for experiments were built from linear texts by linking the tokens in syntactic 

and semantic relations and merging the tokens corresponding to the same entities inside and across 

sentences. The dataset for English is the one used in [23]. It is based on VerbNet/FrameNet annotated 

version of the Penn TreeBank [31], with identified and fused coreferences within the individual texts 

of the corpus with use of the Stanford CoreNLP toolkit [32]. To create a dataset for Russian, we took 

the annotated open corpus Rucor (http://rucoref.maimbava.net/) with anaphorical and coreferential 

relations between noun groups. Rucor contains 156,637 tokens and 3,638 coreference chains. The 

corpus consists of 181 texts and a corresponding table with lists of word offsets for each coreference 

chain. Part-of-speech tags, morphological annotation, dependency trees, and semantic roles were 



MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 042003

IOP Publishing

doi:10.1088/1757-899X/537/4/042003

5

 

 

 

 

 

 

extracted using natural language processor for Russian [33]. Figure 1 shows a curve located above the 

diagonal that indicates that the majority of sentences (73%) are connected. There are 5,962 connected 

sentences and 8,221 sentences in total with up to 150 connected sentences per text; cf. figure 2. 

 
 

Figure 1. The percentage of connected sentences 

for each text. 

Figure 2. The number of connected sentences per 

text (histogram). 

 

4.  Experiments 

The task was to decompose compound graphs into single packages as close as possible to initial 

ground truth sentences. We measured the quality of decomposition calculating recall, precision, and 

F1-score for each initial sentence and averaging the values. The dataset for each language was split 

into a development set and a test set in proportions 85% and 15%. The development set was used for 

training the linear regression model. The test set was used for a comparison of variants of the proposed 

algorithm which differ from each other by values of introduced parameters; cf. Section 5 for details. 

To avoid the waste of computational time for the algorithms with an improper combination of 

values of parameters and to detect them faster, a collection of short texts was selected from the test set. 

The genotype corresponding to the largest text from this collection (in terms of the number of edges 

between tokens) has a length of 99. The predicted number of sentences for this text is 6, i.e. one of 6 

community identifiers might be assigned to each gene. Despite the limitation on possible classes, the 

search area is still large to be fully surveyed. The successful algorithms were run then on the whole 

test set. 

We did 100 independent runs for each algorithm on the collection of short texts and 25 runs on the 

whole test set. The significance of results was calculated using Mann-Whitney U-test [34]. 

 

5.  Results 

Regarding the first part of the approach, consisting in training linear regression model, we got the R2-

value up to 0.85 for Russian dataset and up to 0.97 for English one, thus the obtained models can be 

used for an accurate prediction of the number of sentences. Correlation between expected and 

predicted numbers of sentences in texts of the development sets for both languages are shown in figure 

3. The values obtained within a test set by applying the trained model were used to limit the number of 

identifiers needed to generate the initial population in GA. 
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Figure 3. Predicting the 

number of sentences 

with linear regression 

on the development 

sets. 

Results of different runs presented in tables 1-3, where “split/wo_split” stands for “with/without 

preliminary split to isolated subgraphs”; “non_fixed” stands for “taking the total number of nodes as 

number of possible identifiers”, “predicted” stands for “the possible number of identifiers predicted 

with linear regression”, and “fixed” stands for “exact ground truth number of sentences (possible 

identifiers)”. The numbers in the title of an algorithm correspond to the number of individuals in a 

population and to the number of generations. 

LOUVAIN [21] algorithm widely used for community detection was chosen as a baseline since it 

was designed for the fast unfolding of communities in large networks. The algorithm consists in a 

hierarchical optimization of the same modularity measure we use in our work and includes two main 

phases that are repeated iteratively: finding a local maximum of the modularity and building a new 

network whose nodes are then the communities found during the first phase. “No decomposition”, in 

table 3, corresponds to the simple splitting of initial graphs into isolated subgraphs and treating them 

as the resulting sentences. 

Table 1. Results of performing the algorithms on short texts (non-fixed/predicted/fixed, 

split/wo_split). 

Algorithm Recall Precision F1-score 

LOUVAIN 0.65 0.95 0.73 

GA200x20_wo_split_non_fixed 0.73 0.86 0.76 

GA200x20_split_non_fixed 0.58 0.97 0.67 

GA200x20_wo_split_predicted 0.73 0.88 0.77 

GA200x20_split_predicted 0.83 0.87 0.83 

GA500x40_wo_split_non_fixed 0.67 0.93 0.75 

GA500x40_split_non_fixed 0.58 0.97 0.68 

GA500x40_wo_split_predicted 0.78 0.86 0.80 

GA500x40_split_predicted 0.83 0.88 0.84 

GA500x40_split_fixed 0.89 0.91 0.89 

Table 2. Results of performing the algorithms on short texts with different resources. 

Algorithm Recall Precision F1-score 

GA500x40_split_predicted 0.831 0.877 0.838 

GA500x20_split_predicted 0.821 0.880 0.830 

GA300x30_split_predicted 0.831 0.876 0.837 

GA500x100_split_predicted 0.832 0.877 0.838 

 

Table 3. Results of performing the algorithms on all English texts from the test set. 

Algorithm Recall Precision F1-score 
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We conducted the Mann-Whitney U-test to obtain statistical significance of the difference between 

LOUVAIN and GA500x40_split_predicted F1-scores. The results showed that 

GA500x40_split_predicted algorithm has outperformed LOUVAIN on the short texts with z-score = 

12.22 (p-value < 1.8*10-35) and on the whole test set with z-score = 4.92 (p-value < 4.6*10-07). The 

GA500x20_split_predicted algorithm is the only algorithm in table 2 that differs from the others with 

a statistical significance (each p-value < 3.4*10-08). 

 

6.  Discussion 

Table 1 shows that with the resources 200x20, the algorithm does not converge often close enough to 

the solution and therefore it is difficult to compare the performance of instances with different 

parameters. With more resources, the difference between algorithms is clearer. However, regardless of 

the resources, it is seen that the best solution is achieved when the graph is split and the approximate 

predicted number of sentences is used. The last row in table 1 shows the values which might be 

achieved within given resources if we use ground truth number of sentences. 

We also tried to return the final sentences in two ways: as they were stored in the best genotype and 

selecting isolated connected components from each sentence before returning them that might have 

increased the number of final sentences. In the first case, we had the average recall, precision, and 

F1-score equal to (0.82, 0.85, 0.82), in the second case, they were a bit higher – (0.82, 0.89, 0.83). If 

we return only the largest connected component for each detected sentence we get low scores - (0.8, 

0.86, 0.81). Thus, additional decomposition of final communities into parts in case they consist of 

separate connected components gives better F1-score. However, including this step to the evaluation of 

fitness function gives worse results, therefore this step should be performed only once after the 

termination of the algorithm. 

Considering table 2, we can see that increasing the number of resources (the size of the population 

and the number of generations) leads to better results. It means that modularity is an appropriate 

measure to form the basis of an objective function. At the same time, the Mann-Whitney U-test shows 

that the difference is not significant after a certain point. It means that to achieve higher values of F1-

score the function should be improved. 

Splitting the graph into several isolated subgraphs and applying sentence packaging to each 

subgraph independently gives higher F1-score rather than applying it to the whole graph. That 

distinguishes the algorithm from LOUVAIN which gives better results when applied to the whole 

graph. Thus, determining the approximate number of sentences with linear regression and therefore 

reducing the number of possible solutions improves the convergence of the algorithm. Moreover, an 

opportunity of the algorithm to decrease naturally the number of community identifiers eliminates the 

necessity of running it several times with different predefined numbers of packages. 

Table 3 demonstrates that GA500x40_split_predicted algorithm performs similarly to the 

LOUVAIN algorithm in terms of F1-score achieving higher precision. The main advantage of a 

proposed approach over the baseline algorithm is that the optimized measure (the network modularity) 

might be accompanied by the domain-specific information without the necessity to change the design 

of an algorithm. 

 

7.  Conclusions and future work 

We have presented an approach to performing the sentence packaging in natural language text 

generation which comprises predictive machine learning models and specifically designed genetic 

algorithm to tackle the task as a community detection problem. 

No decomposition 0.31 0.27 0.28 

LOUVAIN 0.66 0.66 0.64 

GA200x20_wo_split_predicted 0.43 0.90 0.52 

GA200x20_split_predicted 0.56 0.88 0.62 

GA500x40_split_predicted 0.60 0.85 0.64 
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We showed that the modularity as a measure to be optimized with GA is a proper basis for the task. 

The approach allows decomposing large graphs into a set of dense subgraphs without the necessity to 

predefine the number of communities. At the same time, there is a possibility to limit this number that 

in practice, according to the results of experiments, leads to increasing the quality of formed packages 

in terms of F1-score. 

We have also created a suitable for the task dataset for the Russian language within this work and 

enumerated linguistic and network features both for English and Russian which give the highest 

R2-value being used in linear regression for predicting the probable number of sentences in a particular 

graph. 

The next prompting step is to integrate linguistic information into the objective function in order to 

increase the quality of generated sentences. The objective function might be based on the closeness of 

a sentence to the multivariate normal distribution (MVN) of different linguistic characteristics, similar 

to the ones used for improving obtained packages by the descent search in [23]: number of tokens, 

number of edges, number of predicate nodes, number of argument nodes, number of roots (vertices 

without input edges), number of verbal and nominal predicate tokens, number of arguments of each 

type, the type(s) of the parent node(s) of each node and the types of its arguments. The MVN 

distribution might be trained using the development set. In case, the development set is preliminarily 

clustered, the joint distribution might be built separately for each cluster and then the highest degree of 

correspondence to given MVN distributions might be chosen as a value to be maximized. The 

composition of this value with the network modularity value will form the final objective function. 

A multi-objective genetic algorithm could be a promising approach for simultaneous optimization 

of different measures that will give an opportunity to find a trade-off between sets of packages with 

proper network structure and with consistent linguistic characteristics. Combining it with the co-

evolutionary scheme will allow avoiding tuning the own parameters of GA. 
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