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Abstract. Reflection is an essential feature of consciousness and possibly the single most 

important one. This fact allows us to simplify the objective of the concept of ‘neural correlates 

of consciousness’ and to focus investigations on reflection itself. Reflexive games are the 

concentrated and pure embodiment of reflection manifestation without the addition of other 

higher cognitive functions. In this paper, we use the game ‘matching pennies’ ("Odd-Even") in 

order to trace the strategies and possible patterns of recurrent neural network operation. 

Experimental results show the splitting of all considered game patterns into two groups. A 

significant difference was observed in these groups of patterns, indicating a qualitative 

difference in game dynamics apparently due to the qualitatively different dynamic patterns of 

neuron excitations of the networks. A similar splitting of all players into two groups was found 

by other authors for human players, which differ in terms of the reflection availability. By this, 

we can assume that one of the causes of the splitting is that the presence of reflection in a 

particular group of recurrent neural networks dramatically changes the game meta-strategy. 

1. Introduction 

The question regarding the nature of consciousness is one of the fundamental problems of science and 

philosophy. Currently, cognitive neuroscience is actively developing with the aim of detecting the 

neural correlates underlying cognitive phenomena. The long-term goal of such studies is to establish 

what kind of neurological events correlate with those or other states and the contents of consciousness. 

Ultimately, such studies should determine the minimum sufficient number of neurons or the level of 

complexity of a nervous system, which necessarily accompanies a given conscious experience. This is 

the standard definition of the concept of ‘neural correlates of consciousness’ (NCC) [1], [2]. 

The orientation of the NCC concept on the identification of minimal neural structures 

accompanying some conscious experience justifies moving from studying the complex functions of 

the human brain [3], [4], [5], [6], [7], [8] to investigating the separate phenomena of consciousness 

implemented by simple systems. 

The theoretical argument in favour of the possibility of an extremely simple formal description of 

consciousness phenomena is made by V. Lefevre [9]. He argued that subjectivity (consciousness, 

mind) is associated with the presence of an internal presentation of the external world including the 

image of the subject itself. Lefevre called this type of construction of the internal representation 
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‘reflection’. Using a simple mathematical model of reflection built on the basis of simple axioms, 

Lefevre explained the results of a number of psychological experiments that had not been satisfactorily 

explained previously. 

This experience of successfully modelling the empirically complex property of consciousness 

known as reflection by means of a simple mathematical model and the orientation of the NCC concept 

at identifying minimal neural structures leads to the suggestion that many properties of consciousness, 

including reflection, can be explored with simple natural and artificial neural networks. 

Indeed, experiments with bees and bumblebees having no more than 1 million neurons [10], [11], 

[12] demonstrated that these organisms are able to operate by concepts and abstractions, and also to 

manipulate the positions of perception, since the ability to repeat the previously unknown behaviour of 

another bumblebee is impossible without transitions between the 1st and 3rd positions of perception, 

which is the manifestation of reflection. 

To reveal the essence of reflexive processes, it makes sense to investigate such behaviour that 

contains the minimal contribution of other cognitive functions, for example logical reasoning, pattern 

recognition and memory. Reflexive games almost perfectly correspond to these requirements [13], 

[14], representing a special kind of Nash equilibrium game with mixed strategies [14]. Among the 

simplest reflexive games are ‘matching pennies’ (‘Odd-Even’), ‘rock-paper-scissors’ and the ‘Believe 

It or Not?’ card game. These games have no fixed winning strategies and each player, in order to win, 

must constantly change his strategy depending on the style of play of the opponent. 

Representing the simplest form of player, recurrent neural networks (NN) playing with each other 

can be used to study the internal mechanism of reflection freed from the emotions, greed and fatigue 

of human players. We can expect that in the course of a reflexive game, new game strategies are 

constantly generated depending on the opponent's previous moves. Since the weight coefficients of 

NN are float digits and the initial untrained state (weight matrix) of NN is provided by the generator of 

random digits, we can expect that the number of different game score dynamics (representing the 

interaction of two strategies) is very big. Thus, the experiment with small NN can answer the principal 

question of whether the experiments with playing NN are reproducible, and whether some typical 

game patterns exist or not. Moreover, the presence of player reflection is expected to change game 

patterns dramatically, which can be detected in the simulation experiments. 

2. Methods and materials 

In order to get an answer to these questions, recurrent full-connected NN consisting of a small (10) 

number of neurons playing ‘matching pennies’ were used. It is a game for two. Each player chooses 

‘0’ or ‘1’ in secret and their choice is then presented and compared. An even sum means that one 

player receives one point, whereas an odd sum means that the other player receives one point. 

‘Matching pennies’ is an example of a reflexive game which has no fixed winning strategy and the 

strategy for a draw is random choice. If the players are not able to choose randomly or try to avoid a 

drawn result, then the game becomes non-trivial: whoever predicts the moves of their opponent better 

is the winner. 

The functioning of a neural network is determined by a matrix of coupling coefficients, which also 

describes its structure [15]: 
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where 
n

i  is the output signal of the i-th neuron at the n-th instant of time, wij is the connection weight 

matrix of a full-connected recurrent network, and An
i is the input signal of i-th neuron at n-th time 

moment.  

The information about the partner’s choice is fed via input neurons of the NN. Two output neurons 

determine the NN’s choice for the next move: the sign of the output value difference gives the NN’s 

choice ‘0’ or ‘1’.  
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The target functions for the NNs are different because one NN wins when its output (game move) 

coincides with the move of the second NN, but the second NN wins when it makes a move different 

from the one of the first NN:  
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in accordance with the next formulae describing the backward time propagation of errors [16], [17]: 
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where 
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depth of the error propagating back in time.  

Then the summarized gradient of H with respect to the weight coefficients at the n-th move is: 
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Then it is possible to organize an adaptation procedure based on the gradient descent: 

 
0,

,1  s
dw

ndH
sww

ij

n

in

ij

n

ij


     (6) 

For processing the results of the game with dynamic outputs, several approaches were used: 

1. Autocorrelation calculation. The calculation of the autocorrelation function of the game score 

time series was used to detect possible similarities among patterns in the game dynamics. At this 

preliminary stage of the study, the expectable non-stationarity of the time series is ignored. For 

processing, the autocorrelation function of the form is used:  
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where N is the size of time series, y is the average value of a dynamic variable, and y
2 – 

dispersion. 

2. Fourier transform. When using this MS Excel function, the initial time series of dynamics are 

decomposed into elementary components, namely the harmonic oscillations of different frequencies 

and phases. It is assumed that changes in phases represent changes in game strategy in some way.  

3. Cluster analysis was used in order to identify whether there are similar patterns in functions and 

Fourier transforms obtained before autocorrelation.  

For the simulation open soft, ‘Lazarus’ (https://www.lazarus-ide.org/) was used. For statistic 

analyses of experimental data, MS Excel (autocorrelation function, Fourier transform) and open soft 

‘Tanagra’ (http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html) (cluster analyses) were used.  
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3. Results 

There were conducted 50 ‘network-vs-network’ games. As was expected, there were no identical 

realizations of game dynamics (score time series). Just for illustration, four realizations of game 

dynamics are presented in figure 1. On the background of visible mismatching in the realization of 

dynamics, the question concerning the existence of general or common game patterns in the game 

arises.  

To identify possible “hidden” patterns, the obtained score time series of the game were analysed 

using several approaches.  

3.1 Autocorrelation function analyses 

The calculation of the autocorrelation function of the series allows the presence of periodically 

recurring patterns in the game score to be estimated. Figure 2 shows the autocorrelation functions for 

some games. Visually, it is difficult to assess the similarity of various curves and the number of 

similar patterns.  

 

 

 

 

 

 

 

 

Figure 1. Examples of 

‘network-vs-network’ game 

dynamics. 

 

 

 

 

 

 

 

 

 

Figure 2. Examples of 

autocorrelation functions of 

some game score dynamics. 

 

 

3.2 Fourier transform analyses 

Fourier transform allows the presence of selected frequencies (similar game score change periods) to 

be evaluated, and in addition, allows a phase change to be evaluated that can be interpreted as a 

sudden switching of strategies. The analysis revealed that the amplitude frequency spectra of the 
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games do not show significant differences, while the graphs of the phase shift show extremely 

different patterns (figure 3). However, we received the same situation as for the autocorrelation 

function, namely that it was not possible to detect the similarity of the phase curves or select any 

similar patterns. Therefore, cluster analysis was applied to the obtained autocorrelation patterns and 

the results of the Fourier transform. 

 

3.3 Cluster analyses 

Open source ‘Tanagra’ software providing a wide range of statistical data processing was used for 

conducting cluster analyses (Hierarchical Clustering, Ward's criterion). The cluster analysis applied to 

the set of autocorrelation functions and also for the amplitudes and phases of Fourier transforms 

surprisingly showed the presence of only two very different patterns of game score dynamics (figure 

4). It looks unusual since this significant difference arose on the background of the continuous 

generation of new strategies, depending on the partner’s moves, which, in turn, depend on the 

prehistory of the game, in an expectedly complex way.  

 

 

Figure 3. Examples of phase changes obtained by Fourier transform. 

 

Figure 4. Cluster trees for autocorrelation functions (A), amplitudes (B) and phases (C) of Fourier 

transform of game score time series. 

phase shift phase shift 
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Analyses of the distributions of NN dynamics between these two big clusters demonstrates a very 

interesting result. The distributions of NN with respect to autocorrelation functions, amplitudes and 

phases of Fourier transforms do not coincide. However, it can be seen visually from Figure 4 if the 

number of NN dynamics in each cluster is compared.  

This difference may indicate a qualitative difference in game patterns as a manifestation of 

qualitative difference in the state of neural networks. The cluster analyses revealed that there are at 

least three parameters or structural characteristics which equally as clearly distinguish the game 

dynamics. 

4. Discussion 

It is interesting that a similar splitting into two qualitatively distinct groups was observed during mass 

research of decision making in non-cooperative strategic interactions [18]. The subjects played the 

‘rock-paper-scissors’ game. The study revealed the presence of two types of strategies in human 

subjects: 1) ‘won-leave, lose-change’, characteristic of the majority of subjects; 2) a strategy based on 

knowledge of the above-described ‘basic human’ strategy.  

The second strategy involves transferring yourself to the position of your opponent, which is 

clearly a reflexive action. At the same time, it obviously allows the player to prevail over the first 

strategy.  

It should be noted that according to the theory of games, in any finite non-cooperative game there 

is an “invincible” strategy, known as the Nash equilibrium. In the case of reflexive games, the Nash 

equilibrium is a random choice of one of the options, but typical neural networks after training are 

deterministic systems, and their response depends only on the input data and previous experience, and 

theoretically can be predicted. However, the emergence of reflection is expected to make the 

behaviour of a neural network more sophisticated because each one of its moves depends not only on 

the current move of its opponent and previous experience, but also on the internal reflexive 

representation of the opponent’s strategy.   

 

5. Conclusions 

It was shown that game patterns are predictably very variable. However, their binary splitting into two 

clusters with respect to different features is rather surprising. The observed significant difference in 

these groups of patterns indicates a qualitative difference in game dynamics apparently due to the 

qualitatively different dynamic patterns of neuron excitations of the networks. 

It can be hypothesized that the cause of such a large difference in game patterns is the presence of a 

reflexive representation of an opponent in one or both neural network players. However, since the 

distributions of game dynamics with respect to the autocorrelation function, amplitude and phase of 

Fourier transforms do not coincide, we can suggest there are additional features of structure and 

functioning which result in their binary splitting. This very interesting question requires further 

investigation.  
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