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Abstract. The task is to analyse the temperature distribution in the material under ultrashort
laser irradiation. The mathematical model is built on the basis of a two-temperature model
describing transition phenomena in a nonequilibrium electron gas and lattice with an ultrashort
laser effect on the material. The vaporized body is considered as a thin plate and the problem is
formulated as a system of one-dimensional boundary-value problems of the heat equation
written for the electron and lattice components. The initial problem is reduced to solving a
system of singularly perturbed boundary problems of the heat equation with nonlinear
boundary conditions on moving boundaries, an approximate solution of which is obtained in
the form of an asymptotic expansion of the solution in the Poincaré sense in powers of small
parameters.

1. Introduction

The rapid development of experimental technology has led to the fact that more and more attention is
paid to ablation under the action of ultrashort laser pulses of the picosecond and femtosecond ranges,
for which the quasistationary ablation regime is not achieved.

When using shorter (subpicosecond and femtosecond) laser pulses, features arise in the ablation
kinetics that cannot be described within the framework of the conventional thermal model. However,
ablation using ultrashort laser pulses is used in high-tech materials processing. In the case of a metal,
one of the features is the effects associated with the electron-phonon interaction and the phenomena
caused by a hot electron gas in a substance [1-3]. The task of studying the influence of boundary
conditions and pulsed irradiation concerning the temperature distribution in the material is also very
important.

The task is to analyse the temperature distribution in the material during subpicosecond laser
ablation. The vaporized body is considered as a thin plate and the problem is formulated as a system of
one-dimensional boundary-value problems of the heat equation [2], written for the electron and lattice
components.

2. Problem statement
The two-temperature model [2] describes the transport of energy inside a metal using a system of heat

conduction equations for the temperature of T, electrons and T, lattice:
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where 1, =c, /t,, is coefficient of the rate of energy exchange between the electronic and lattice

rel
subsystems (t,, -characteristic exchange time for the electronic subsystem); b, is Richardson constant;
T, is output work; k, =k, (T, +T,)/e is J, power flux density conversion factor into to energy units;

H, p, L- thickness, density and specific heat of material melting; v,, T, - constants characterizing the
model of evaporation, which are taken from reference books; r, = (t2k+1 —t2k), k=0,m-1 - time of
k-th laser pulse, (t, —t, ), k=Lm - time between pulses (n= 2m);Te|t:tO =T,,(2)=T,.
Ti| =T,0(2)=T,; v., w; functions determine the modes of heat transfer on the back of the plate.
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Q heat source is defined in the following equation: Q=—8—=a-l(0,t),
Z

1(0,t) =1,,(t), t [0, r,], k=0,m-1, where «, 1, - absorption coefficient and radiation intensity
on the surface of the material (z=0), and, I,_,(t) = A-1(t) depends on the shape of the laser pulse,
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This model is applicable in the case when it is possible to use the classical Fourier laws, that is, it is
applicable for times much longer than 7, characteristic time for establishing an equilibrium
distribution in the electron gas. 7, time - depends on the electron temperature (energy density in a laser

pulse), in most problems it is several hundred femtoseconds. The propagation of electron temperature
arises on a spatial scale larger than the electron mean free path |, [1, 2].

3. Problem solution
We will reduce the considered two-temperature model to a dimensionless form. For this, we will put

z=x-7,, t=s-t,, where z, is the characteristic (length) thickness of the heating (1107 u),
t, >t , or; additionally we will assume that c,,C;, 7., %, &, &, A do not depend on temperature.
We will obtain the following dimensionless singularly perturbed boundary value problem:
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The solution of this boundary value problem is sought according to the scheme of the splitting

method, for which we assume that in the first approximation T, =T,(x,0) =T, , =T, = const and we
find it as a solution of the boundary value problem for equation (8) with the corresponding initial and
boundary conditions; then, using the obtained solution 'ITe(x,s), we define as the solution of the
boundary value problem (9), (10), (11), (12). Continuing this process n times we obtain the n -th
approximation of the desired solutions T, (x,s), T.™(x,s).

In the first approximation for the initial pulse to determine T.“(x,s), T®(x,s) (if
T, =T,(x,0) =T, =T,) we have the following boundary value problem
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_ T .
If we make a change of variables z = X+S-v, exp {_T aT } t=s, then we get the following
+
0

boundary value problem (hereinafter, to simplify, the superscript in the expressions will be omitted i.e.
TOX+s-7,,8) > T(z,1), TO(X+s-7,,8) > T.(2,1)
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We will introduce the notation
RIT.@t) |=At-exp{-t-T}+1(T.(2.)-T,) =Q(z,t) + T, (z.1),
RIT(zY) =& (T.aH-TY).
To solve boundary problems, we use integral representations of solutions T,(z,t), T,(x,t),
written using the Green function [4-6]
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The Green function of this boundary value problem is written out explicitly [4-6]. To find the
unknown functions 4 (t), 4, (t), @ (t), @,(t) we use the boundary conditions (21), (22), (25), (26).
As a result, we obtain these functions in the form of asymptotic expansions
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where the coefficients C},, C/, are calculated explicitly: a, =k, -exp(—T—“j, A=T,+T_,
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Using the obtained expressions for & (t), o;(t), j =12, we find the asymptotic expansions of

solutions T,(z,t), T,(z,t) according to the following iterative scheme:
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Continuing this process further, we obtain the solution in the form of asymptotic expansions in
powers of small parameters [4, 6]. Then the following statement is true

Theorem. The asymptotic expansion of the solution to the boundary value problem (19) - (26)
has the following form:

1) In the “boundary layer” of the border z =Vt, that is, if the following condition is fulfilled
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2) In the “intermediate layer” of the border z =Vt that is, if the following condition is fulfilled
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4) In the “intermediate layer” of the border z =V t+h, that is, if the following condition is
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5) In the “boundary layer” of the border z =Vt +h, that is, if the following condition is fulfilled
z—Vt—h :O(pep) ,z—vot—h:O(pip) , p>1,
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are computed explicitly [4-6] and do not depend on the small decomposition parameters, i.e. we have
an asymptotic expansion in the Poincaré sense. The resulting expansions satisfy the initial and
boundary conditions of the problem.

It should be noted that in the above theorem only consistent asymptotic scales are used. In the
extended formulation, it is necessary to present the results based on a combination of different
asymptotic scales.

The brief algorithm for the asymptotic analysis of a boundary value problem for a single laser
irradiation pulse is similarly carried out for the entire cycle of pulsed exposure to ultrashort radiation
on the material under study.

The coefficients of the asymptotic expansions d{ ;, d?;,

4. Conclusion

The obtained asymptotic expansions of the problem solution allow to carry out a parametric analysis
of the process under study, to reveal the influence of the boundary conditions and the pulsed mode of
irradiation on the temperature distribution in the material.
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