
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Parallel implementation of the greedy heuristic clustering algorithms
To cite this article: L A Kazakovtsev et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 537 022052

View the article online for updates and enhancements.

This content was downloaded from IP address 115.208.74.124 on 20/09/2019 at 03:23

https://doi.org/10.1088/1757-899X/537/2/022052
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/989518259/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 022052

IOP Publishing

doi:10.1088/1757-899X/537/2/022052

1

Parallel implementation of the greedy heuristic clustering

algorithms

L A Kazakovtsev1,2, I P Rozhnov1, E A Popov1, M V Karaseva1,2

and A A Stupina1,2

1 Reshetnev Siberian State University of Science and Technology, 31, Krasnoyarskiy

Rabochiy avenue, Krasnoyarsk, 660031, Russia
2 Siberian Federal University, 79, Svobodny avenue, Krasnoyarsk 660041, Russia

E-mail: levk@bk.ru

Abstract. Authors propose parallel greedy heuristic k-means clustering algorithms for

implementation on the graphical processing units (GPU) for solving large-scale problems. The

computational experiments illustrate high performance of the GPUs in comparison with running

the greedy heuristic algorithms on a central processor unit which is especially significant in the

case of big datasets and bug numbers of clusters. The efficiency of the greedy heuristic

algorithms in comparison with the standard k-means algorithm remains.

1. Introduction

Automatic grouping (clustering) systems become increasingly widespread due to the expansion of the

application area of data analysis problems such as image recognition, solution of diagnostic problems

in medicine, marketing research, Internet traffic research, etc. [1-3].

The k-means problem, along with a very similar p-median problem, is one of the classical problems

of location theory [4]. The k-means problem is to find such k cluster centers X1...Xk in a d-dimensional

space that the sum of squares of distances from them to given points Ai reaches its minimum.

 

2
11

1

)(XAminminargX,...,XF i
N
i

X,...,XXX
k

kd
  


, (1)

The most popular method for solving the k-means problem is the algorithm of the same name, also

known as the Lloyd's algorithm or the ALA procedure (Alternating Location-Allocation). The k-means

algorithm sequentially improves the known solution, allowing us to find a local minimum. In the strict

sense, this algorithm is not a local search algorithm, since the search for a new solution is not necessarily

carried out in an ε-neighborhood of the existing solution. This is a simple and fast algorithm applicable

to the widest class of problems. The algorithm has some limitations, in particular, the number of groups

k must be known in advance. This algorithm can be described as follows.

Algorithm 1 k-means

Required: data vectors A1...AN and k initial cluster centers X1...Xk

do

1: For each center Xi, build a cluster Ci of data vectors so that for each data vector of this

cluster, center Xi is the nearest of all centers.

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 022052

IOP Publishing

doi:10.1088/1757-899X/537/2/022052

2

2: For each cluster, calculate new value of center Xi.

until steps 1-2 alter at least one cluster.

The aim of our study is to improve the accuracy of the result of solving the k-means problem to

obtain the most accurate (by the value of the objective function) and a stable result, for a fixed, limited

time, with the use of modern parallel GPU (Graphical Processor Unit) systems.

2. Clustering Algorithms of the Greedy Heuristic Method

In [3, 5], authors consider the application of genetic algorithms with a greedy agglomerative heuristic

procedure, as well as modifications of the EM algorithm for the separation of homogeneous batches of

industrial products and show the advantage of new algorithms over classical clustering algorithms for

multidimensional data.

The greedy agglomerative heuristic procedure for the problem of k-means and similar problems [6]

consists of two steps. Suppose that there are two well-known (parental) solutions to the problem (the

first of which, for example, is the best of known solutions), which are represented by the sets of cluster

centers S. First, the sets of parent decisions are merged (unified). We obtain an intermediate invalid

solution with an excessive number of clusters. Then, the number of centers is gradually reduced. In each

iteration, algorithm eliminates such a center, that its removal results in the least significant deterioration

in the value of the objective function (1).

Algorithm 2 is the basic greedy heuristic algorithm, which sequentially reduces the number of

clusters (given by centers):

Algorithm 2 Basic Greedy Agglomerative Heuristic Procedure for Large Clustering Problems

Required: initial number of clusters K, required number of clusters k<K, k>50, initial solution S, |S|=K.

1: Improve the solution S with Algorithm 1 (if possible).

while K≠k do

for each  ' 1,i K do

2:  '' \ iS S X . Caclulate
''iF =F(S’) where F(.) is the value of the objective function (1).

end do

3. Form set Selim of nelim of centroids, SelimS, |Selim|=nelim, with minimum values of
''iF . Here,

nelim=max{1,0.2(|S|-k)}.

4: Compose new solution S=S\Selim, K=K-1, and improve it with Algorithm 1.

end do

Ways of merging solutions may be different. One of such ways is elementwise merging [8]:

Algorithm 3 Greedy Procedure #1

Required: two “parent” sets (arrays) of cluster centers S’={X’1,…,X’k} and S’’={X’’1,…,X’’k}

Calculate the objective function (1): F*=F(S’);

Arrange the elements of S’’ in ascending order of values   .''X'SF 'i

for each  ' 1,i K do

1: Attach an element of S’’ to S’: S=   .''X'SF 'i
'

2: Run Algorithm 2 with initial solution S. Save the obtained set of cluster centers Si’ and

corresponding value Fi of the objective function (1). If Fi<F* then S’=S.

end do

3. Return the best solution obtained in Step 2.

In [3, 5], author propose simpler ways of merging.

Algorithm 4 Greedy Procedure#3:

1: Combine sets '.'' SSS 
2: Run Algorithm 2 with S.

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 022052

IOP Publishing

doi:10.1088/1757-899X/537/2/022052

3

Algorithm 5 Greedy Procedure#2: 1: Combine sets '.'' SSS  2: Run Algorithm 2 with S.

 Generate randomly)1;0['r . Calculate r=[(k/2-2) r’2]+2. Form a randomly chosen subset S’’’ of S’’

of cardinality r. Combine sets '.''' SSS  Run Algorithm 2 with S.

These greedy heuristic procedures formed the basis for a wide variety of efficient genetic algorithms

[1, 2], where these procedures are used as crossover operators, as well as VNS algorithms (Variable

Neighborhood Search) [7].

The idea of this work is to implement the algorithms of the Greedy Heuristics Method using GPU

systems [8] and investigate their properties when solving problems of high dimensionality.

3. Compute Unified Device Architecture

CUDA (Compute Unified Device Architecture) is a software&hardware architecture for parallel

computing, which can significantly increase computational performance through the use of graphics

processors from Nvidia company[8]. Researchers use CUDA extensively in various fields, including

video and image processing, computational biology and chemistry, fluid dynamics modeling, image

recovery from computed tomography, seismic analysis, ray tracing etc.

Weak points of using previous GPU programming methods are that they do not use vertex shader

execution blocks, data are stored in textures only, and multipass algorithms use pixel shader units [9].

Limitations of previous GPU programming methods can include: insufficient use of hardware

capabilities, limited memory bandwidth, no scatter operation (only gather), mandatory use of the

graphics API [9].

The main advantage of CUDA is that this architecture is designed to effectively use non-graphical

computing on the GPU and uses the C programming language without requiring the transfer of

algorithms to a convenient form for the concept of a graphics pipeline. CUDA does not use graphical

APIs, offering random access to memory (scatter or gather) [8].

Performing calculations on the GPU shows excellent results in algorithms that use parallel data

processing, in contrast to algorithms implemented on the CPU, if the same sequence of commands is

applied to a large amount of data. The best results are achieved if the ratio of the number of arithmetic

instructions to the number of memory accesses is large enough. This places less demands on flow

control, and the high density of calculations and large amounts of data eliminate the need for large

caches which are rather efficient on a CPU.

4. Parallel Implementation of Greedy Algorithms

Various parallel versions of the k-means algorithms are known [8, 10]. For the second part of the

algorithm which realizes the 1st step of Algorithm 1, we used a single CUDA thread.

Algorithm 1.1a CUDA realization of Step 1 of Algorithm 1, part 1.

X’j=0 for all .kj }1,{ // Here, X’j are vectors used for calculation of new cluster centers.

counterj=0 for all .kj }1,{ // object counters for each cluster.

For the second part of the algorithm which realizes the 1st step of Algorithm 1, we used Ntrreads=512

threads for each CUDA block. Number of blocks is calculated as

Nblocks=(N+Nthreads-1)/Nthreads. (2)

Thus, each thread processes only one data vector.

Algorithm 1.1b CUDA realization of Step 1 of Algorithm 1, part 2

i = blockIdx.x * blockDim.x + threadIdx.x .

if i>N then Return.

j’=arg minj
2

ij - XA . // number of cluster

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 022052

IOP Publishing

doi:10.1088/1757-899X/537/2/022052

4

X’j’=X’j’+Ai.

Ci=j’. // Assign Ai to cluster j’.

counterj'=counterj’+1.

Synchronize threads.

For the second part of the algorithm which realizes the 2nd step of Algorithm 1, we used Ntrreads=512

threads for each CUDA block. Number of blocks is calculated as Nblocks2=(k+Nthreads-1)/Nthreads.

Algorithm 1.2a CUDA realization of Step 2 of Algorithm 1

j = blockIdx.x * blockDim.x + threadIdx.x .

if j>k then Return.

Xj’= X’i/counterj.

Synchronize threads.

In addition, we implemented Step 2 of Algorithm 2 on the GPU. At this step, Algorithm 2 calculates

the total distance after removing one cluster:
''iF =F(S’), where  '' \ iS S X

. Having calculated F(S), it

we can calculate ''iF =F(S’)= F(S) + .DN
l l 


1 , where























.lC, - XA - XAmin

,lC,

.D
'iCjjji' jk,j

'i

l
'i

22

},1{

0

 (3)

Here, we used 512 threads for each CUDA block, number of blocks is calculated in accordance with

(2). First, variable sumD in initialized with 0. Then, the following algorithm runs for each data vector

and calculates lD .

Algorithm 2.2a CUDA realization of Step 2 of Algorithm 2

l = blockIdx.x * blockDim.x + threadIdx.x .

if l>k then Return.

Calculate lD in accordance with (3).

If lD >0 then atomicAdd(sumD, lD).

Synchronize threads.

All other algorithms are run on the central processor.

5. Experimental results

For our study, we used classical data sets from the UCI (Machine Learning Repository) [11] and

Clustering basic benchmark [12] repositories. The system was as follows: of Intel Core 2 Duo

E8400CPU, 4GBRAM. NVIDIA GeForce 9600 GT graphics processor, with 2048 MB of RAM.

For all data sets, we performed 30 attempts to run each of the 10 algorithms (k-means, k-VNS1, k-

VNS2, k-VNS3, k-VNS1-RND, k-VNS2-RND, k-VNS3-RND, GA -FULL, GA-MIX, GA-ONE). Only

the best results achieved in each attempt were recorded, then from these results for each algorithm the

minimum and maximum values (Min, Max), mean value (Average) and standard deviation (Std.dev.)

were calculated. The k-means algorithm was launched in multi-start mode. The best values of the

objective function (minimum value, mean value and standard deviation) are shown in bold italics

(Tables 1-3).

In our earlier research of the BIRCH-3 data set [8] without CUDA technology, the best value

(3.72525E+13) for the minimum objective function was obtained subject to 6 hours for each attempt.

When calculating using the GPU (Table 2), we obtained the minimum value of the objective function

3.71473E+13 with the same algorithm (its CUDA version), in 10 minutes, and little worse value

(3.72082E+13) in 1 minute.

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 022052

IOP Publishing

doi:10.1088/1757-899X/537/2/022052

5

Table 1. Results of experiments with dataset Mopsi-Joensuu (180 seconds, 30 attempts).

Algorithm Objective function value

Min Max Average Std. Dev.

100 clusters

k-means 20.2234 25.1256 22.6732 1.9230

k-VNS1 1.8518 2.0704 1.9320 0.0996

k-VNS2 1.6519 1.7969 1.7335 0.0504

k-VNS3 1.6745 1.7950 1.7301 0.0444

k-VNS1-RND 1.9142 2.9365 2.2084 0.3680

k-VNS2-RND 1.7589 2.0456 1.8427 0.1026

k-VNS3-RND 1.6558 1.8107 1.7204 0.0646

GA-FULL 1.6544 1.7569 1.6760 0.0398

GA-MIX 1.6600 17.7807 5.4884 6.5581

GA-ONE 19.0837 33.0772 26.8381 4.5549

300 clusters

k-means 5.6141 8.9812 7.7135 1.1162

k-VNS1 2.0335 3.4027 2.6656 0.4973

k-VNS2 5.1070 11.1468 8.9344 2.2980

k-VNS3 0.1432 0.2974 0.1836 0.0582

k-VNS1-RND 2.2020 4.3911 2.7338 0.8446

k-VNS2-RND 6.7474 14.6131 10.9959 2.6691

k-VNS3-RND 0.1533 14.4612 9.1619 5.6364

GA-FULL 0.2073 3.6894 1.2855 1.5409

GA-MIX 0.7039 2.5733 1.4348 0.6968

GA-ONE 8.0874 15.9837 11.8232 3.1623

Table 2. Results of experiments with dataset BIRCH-3 (100 clusters, 30 attempts).

Algorithm Objective function value
Min Max Average Std. dev.

60 seconds

k-means 8.18676E+13 9.96542E+13 8.98255E+13 8.37212E+12
k-VNS1 3.71973E+13 3.76732E+13 3.73639E+13 0.18509E+12
k-VNS2 3.73240E+13 4.06161E+13 3.91485E+13 1.14305E+12
k-VNS3 3.72082E+13 3.72550E+13 3.72422E+13 0.01998E+12
k-VNS1-RND 3.71993E+13 3.76607E+13 3.73757E+13 0.18322E+12
k-VNS2-RND 3.98574E+13 5.17877E+13 4.47900E+13 4.74952E+12
k-VNS3-RND 3.71558E+13 3.73328E+13 3.72362E+13 0.06507E+12
GA-FULL 3.74076E+13 3.84774E+13 3.75950E+13 0.34167E+12
GA-MIX 3.76402E+13 4.13519E+13 3.84577E+13 1.44968E+12
GA-ONE 6.36816E+13 9.10870E+13 7.47659E+13 11.6766E+12

600 seconds

k-means 7.98405E+13 9.96542E+13 8.93187E+13 9.04845E+12
k-VNS1 3.71474E+13 3.71933E+13 3.71778E+13 0.02348E+12
k-VNS2 3.71474E+13 3.72261E+13 3.71834E+13 0.02595E+12
k-VNS3 3.71473E+13 3.72453E+13 3.71817E+13 0.03723E+12
k-VNS1-RND 3.71474E+13 3.71932E+13 3.71775E+13 0.02326E+12
k-VNS2-RND 3.71474E+13 3.72275E+13 3.71853E+13 0.03177E+12
k-VNS3-RND 3.71474E+13 3.72275E+13 3.71857E+13 0.03163E+12
GA-FULL 3.72332E+13 3.74141E+13 3.72741E+13 0.06510E+12
GA-MIX 3.71525E+13 3.72071E+13 3.71949E+13 0.02097E+12
GA-ONE 3.71495E+13 3.7233E+13 3.71906E+13 0.04180E+12

MIP

IOP Conf. Series: Materials Science and Engineering 537 (2019) 022052

IOP Publishing

doi:10.1088/1757-899X/537/2/022052

6

Table 3. Results of experiments with dataset KDDCUP04BioNormed (2000 clusters, 14 hours, 30

attempts).

Algorithm Objective function value

Min Max Average Std. dev.

k-means 4 424 475 4 426 251 4 425 137 786.5

k-VNS1 4 358 583 4 386 584 4 367 311 12 966.3

k-VNS2 4 338 584 4 419 181 4 378 916 42 724.9

k-VNS3 4 311 992 4 318 547 4 315 658 2 721.5

GA-FULL 4 314 647 4 319 851 4 316 581 2 847.4

GA-MIX 4 332 422 4 354 462 4 342 210 11 224.5

GA-ONE 4 426 306 4 431 211 4 428 233 2 615.5

6. Conclusions

Note the following: the clustering algorithms of the Greedy Heuristic Method, which show the best

results of the objective function with a small number of clusters, are not always the best with the increase

in the number of clusters. However, the advantage of the family of greedy heuristic algorithms over the

k-means algorithm remains after transition to the CUDA architecture. The use of a GPU shows an

advantage in the achieved speed in comparison with the calculations on the CPU, and the advantage

increases for large data sets and a large number of clusters.

Acknowledgements

Results were obtained in the framework of the state task No. 2.5527.2017/8.9 of the Ministry of

Education and Science of the Russian Federation.

References

[1] Vempala S and Wang G 2002 A spectral algorithm for learning mixtures of distributions FOCS

841-60

[2] Orlov V, Stashkov D, Kazakovtsev L, Rozhnov I, Nasyrov I and Kazakovtseva O 2018 Improved

method of production batchs of electronic components with special quality requirements

Modern high technology 1 37-42

[3] Kazakovtsev L and Antamoshkin A 2014 Genetic Algorithm with Fast Greedy Heuristic for

Clustering and Location Problems Informatica 38 229-40

[4] Farahani R and Hekmatfar M 2009 Facility location: Concepts, models, algorithms and case

studies (Heidelberg: Springer-Verlag)

[5] Kazakovtsev, L, Stupina A 2015 Fast genetic algorithm with greedy heuristic for p-median and

k-means problems International Congress on Ultra Modern Telecommunications and Control

Systems and Workshops 35-9

[6] Kazakovtsev L 2016 The greedy heuristics method for systems of automatic grouping of objects

(Krasnoyarsk)

[7] Orlov V, Kazakovtsev L, Rozhnov I, Popov N and Fedosov V 2018 Variable neighbourhood

search algorithm for k-means clustering IOP Conf. Series: Mater. Scie. Eng. 450 022035,

DOI:10.1088/1757-899X/450/2/022035

[8] Zechner M, Granitzer M 2009 Accelerating K-Means on the Graphics Processor via CUDA

DOI:10.1109/INTENSIVE.2009.19

[9] Luebke D and Humphreys G 2007 How gpus work Computer 40(2) 96–100

[10] Lutz C, Breß S, Zeuch S, Markl V and Rabl T 2018 Efficient k-Means on GPUs DaMoN’18 June

11 Houston, TX, USA

[11] UCI Machine Learning Repository Available from http://archive.ics.uci.edu/ml

[12] Clustering basic benchmark Available from http://cs.joensuu.fi/sipu/datasets

https://doi.org/10.1109/INTENSIVE.2009.19

