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Abstract. The paper contains an analysis of the task of establishing quantitative information 

reflecting the properties of the observed object. The authors of the article showed that in order 

to operate, both controls instruments and measuring instruments, it is necessary to form a 

“Euclidean measure” for the property of the object at the current time. The article describes an 

independent method for estimating the uncertainty of the state of an object by calculating the 

entropy of its observed properties. In particular, it is shown that the entropy potential is 

proportional to the measure of Euclidean space. A description is given of the method for 

determining the shape of an approximating function for sampling results based on a comparison 

of the difference between Euclidean measures and measures of the information space formed for 

entropy potential. 

1. Introduction 

The practical purpose of the functioning of any engineering device is to convert energy or information. 

The task of any control system in the most general sense is the processing of information about the 

current operating mode of a controlled object and the development on the basis of this control action, 

that ensuring the current operating mode of the object approaches the specified mode [1, 2]. Information 

processing is necessary for the formation of the control action aimed at changing the state of the system. 

Information processing means are all kinds of computing devices for converting signals in accordance 

with a certain algorithm. Biological systems are of particular importance that is a chaotic system in 

which the probabilistic properties are due to its internal structure. In a biological system, the object 

activity is interrelated with the production of entropy, which characterizes the disorder of a biological 

object [3]. Probability distributions of time intervals and data disorder contain information about the 

chaotic properties of an object. In this regard, the processing of probabilistic and informational 

characteristics of a biological object, reflecting its deterministic and chaotic properties, is an actual 

problem. [4].  
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2. Organization of information processing in measurement and control systems  

The organization of measurement processes consists in comparing the properties of an object of research 

with a measure of the same property using technical means that are included in the structure of control 

systems [5]. Structures of technical means of measurement and control contain specific devices for 

comparing the parameters received from the object with the specified value of the measure of the same 

value. In both cases, the Euclidean measure of the difference between the value of a quantity coming 

from the object of observation or control and the measure value of the same homogeneous quantity is 

formed at the output of the comparison devices. Depending on the purpose of the device, the measure 

of difference Δx is used to control the object when organizing the process of control or to form measure 

of measurement device. Thus, the scheme of organization of measurement and control processes 

contains an object of observation and a device for forming a measure based on an estimate of the 

difference Δx between similar properties of the object and the measure. 

3. Metric space used for object control  

In metrology, the concept of measure is defined as the measuring instrument used to reproduce and store 

the value of physical quantity [6]. A more general representation contains the mathematical definition 

of the measure as numeric function that associates with each set, from a certain family of sets, a non-

negative number [7]. In mathematical analysis, the measure is the way to assign the number to each 

suitable subset of that set, intuitively interpreted as its size [8]. Moreover, the function ρ is called the 

measure if it satisfies the property of non-negativity and additivity. An example of the mathematical 

measure is the Lebesgue measure on a Euclidean space, which assigns the many dimensional volume of 

Euclidean geometry to suitable subsets of the n-dimensional Euclidean space Rn. Technically, the 

measure is the function that assigns the non-negative real number to certain of a set X. 

In the development of theoretical and practical models, such philosophical categories as space, 

expressing the order of coexistence of individual objects, and the time that determines the order of 

change of events are used as design tools. During the measurements, a metric space is used, in which 

the distance between any pair of elements of this space is determined. Among the known metric spaces, 

one should distinguish the Euclidean space. There, the operation of scalar multiplication of vectors is 

given. The “Euclidean meter” is defined as the space metric, equal to the distance between its two points. 

The formula for calculating the n-dimensional Euclidean measure is 
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where xi, yi are the coordinates of points in space. 

In developing the means of measurement and control, the “Euclidean measure” is used to form a 

control action. As disadvantages of such a system, it should be noted that it is not possible to control 

and correct random effects on the measured values. To eliminate these shortcomings, observation of the 

magnitude for a long time is usually used, followed by statistical processing of the observation results. 

Effective monitoring and control of objects is possible only if random disturbances are taken into 

account. Classical methods of research and analysis of the state of objects are based on the description 

of random effects using correlation functions and spectral density functions. These methods require 

considerable time, the use of complex equipment, the use of additional material means (the use of 

reagents), which makes it difficult to apply classical methods of analysis in the construction of control 

and measurement systems. Under such conditions, observation and control of object parameters has to 

be carried out in conditions of uncertainty about the acting perturbations that is similar to the 

“information vacuum” [9]. 
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4. Мeasure of the space of elementary events  

4.1. Euclidean measure of the events space 

One of the typical tasks of data processing, received from a controlled object, is to build a functional 

change in the signal over time, subject to random disturbances. One of the typical tasks of data 

processing, received from a controlled object, consist to build a functional change in the signal over 

time, if damage occurs from random perturbations. For these purposes, a sample of the measurement 

results of the signal during a specified time interval is formed. Then the function of the approximation 

is determined on the basis of the data obtained. The parameters of this function contain information 

about the state of the object. The conformity assessment of the approximation function to a sample of 

measurement results is carried out by comparing measures that formed for sampling measurement 

results and for discrete sampling of the approximating function that was be found at the same points in 

time. 

To analyze data that was received from the control object during a period of time t signal value array 

is formed. A sample of the volume N of values of a random variable  is a set of values (x1, x2, …xN) of 

a random characteristic obtained as a result of independent measurements at different points in time. 

After the measurement has taken place, the Sampling of random values is a vector of dimension N with 

independent components. When analyzing random variables, the scatter of a sample of values is 

estimated using sample variance. A non-negative number equal to the square root of the sample variance 

multiplied by (N – 1) corresponds to the “Euclidean measure” for the sampling space of current control 

results centered relative to the mathematical expectation. 

 

 
1/2

2

1

( ,  )
N

c x i x

i

x m x m


 
   

 


 (2) 

where mx is the expected value of the controlled parameter. 

Thus, the product of the variance by the number N of the experimental results is a Euclidean measure 

between the sample vector of a random variable and the expectation vector, which is used in circuits to 

control an object or to form a measure when solving a measurement problem. 

Expression (2) defines the Euclidean measure of the sample for the current control results. By 

analogy, a measure of comparison is determined for apriority known control function. 
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where yi is the sample of values obtained by substituting time series counts in the control function. 

The difference of measures formed in the probabilistic space of elementary events allows us to 

compare the sample of measurement results and the sample of the approximating function. The formula 

for the difference of measures (2) and (3) is: 

  ( ,  ) ( ,  )p a y c xy m x m   
 (4) 

When processing the values of a controlled parameter of an object, this uncertainty is formed as the 

difference of Euclidean measures calculated in the probabilistic space of elementary events for sampling 

a random variable of the object and for sampling an approximating function with a priori known form. 

The difference (4) reflects the uncertainty of the state of the object, the minimization of which is 

achieved by organizing negative feedback in the control systems of the object or the means of 

measurement for the formation of a control action. In continuous processes, this uncertainty is formed 

on the basis of the difference in the Euclidean measures specified by the device for forming the measure 

and the actual values of the properties of the physical object. 
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As the main drawback of the method of organizing the difference between the Euclidean measures 

of an object or a device for forming a measure, one should note the invariance of the a priori given form 

of the control function. An error in the choice of the form of the function leads to large values of the 

uncertainty of the “Euclidean measure” in the probabilistic space of elementary events, comparable to 

the size of the measure. 

A significant reduction in the uncertainty of the state of an object is achieved by choosing the form 

of the control function based on an additional assessment of its properties. To determine the form of 

functions, the methods of statistical evaluation of initial and central moments of high order have been 

used, that are used to select the forms of statistical distributions [10, 11, 12, 13]. Another approach to 

analyzing the form of functions is to compare the informational entropy of the control function and the 

informational entropy of the distribution result. This approach also found application in modern 

literature [14, 15, 16, 17]. 

4.2. Entropic measure of the events space 

The entropy of the probability H(y) of the distribution of the monitored parameter y is an independent 

way to assess the level of uncertainty of the state of an object [18, 19, 20]. 
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where f(y) is the distribution density of the values of the observed property. 

Currently, the Rényi and Shannon entropy finds a lot of different applications in many fields modern 

science such as biology, medicine, geophysics, economics, computer science, electrical engineering, 

chemistry and physics. In wave mechanics, the Hirschman uncertainty, defined through the Shannon 

informational entropy, is often used as the uncertainty relation [21,22]. Heisenberg's uncertainty 

principle can be expressed as a lower bound on the sum of these entropies. 

Since it is often impossible to directly estimate the entropy of a signal from experimental data, a 

priori known approximation is used for data processing by some distribution with specified 

characteristics, that limits the choice of its shape. Therefore, to assess the state of an object, a limited 

set of information characteristics is used that uniquely determine its entropy. The use of such 

characteristics as coordinates of entropy models of objects creates prerequisites for effective monitoring, 

forecasting and control [9, 23]. The problem of evaluation with a limited set of informational 

characteristics also discover in predicting the behavior of objects based on the use of fuzzy logic, the 

algebra of which is built on the elements of functions [14, 24]. 

In control and measurement systems, two similar characteristics of the uncertainty interval are used 

as a measure of the uncertainty of the state of an object: the entropy deviation [14, 25] and the entropy 

potential [9]. The Measure of the object uncertainty is set as half the range of a uniform distribution, 

having the same entropy as the distribution law of the observed parameter. The formula for calculating 

the object uncertainty interval for an arbitrary distribution law of the parameter y is 

 

1
exp( ( ))

2
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 (6) 

In instrument making, the uncertainty interval of an object is usually called the entropy error of 

measurement tools. In modern technology, the entropy error is used to evaluate the misinforming 

hindrance. Recently, another term for the interval of uncertainty of the state of the object is used in the 

development of control systems. The entropy potential is the kind of generalized parameter same as the 

characteristic of the level of instability of an object. The more the level of instability of an object 

increases, the greater will be the uncertainty of its state [9]. The expression for calculating the entropy 

potential for a sample of monitoring and control results at equal data grouping intervals Δx is [26]. 
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The entropy potential similarly the standard deviation characterizes the uncertainty of the observed 

value. The entropy coefficient Ke is used as a characteristic of the instability of the observed object. It is 

equal to the ratio of the entropic potential to the standard deviation. The formula for calculating the 

entropic coefficient is 
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The entropy coefficient Ke is in the range from 0 to 2,066. Due to the fact that the entropy potential 

is a scalar function defined in the whole set of values of the parameter y and is associated with the 

distribution spread parameters (RMS and variance). 
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Its estimate can be postponed in the space of the Euclidean measure.  

Information processing is the computational operation of systematically changing the content or 

presentation of information. For these purposes, it is convenient to use the difference of measures formed 

in the space of elementary events. 
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Therefore, a distribution function with a known entropy coefficient is chosen a priori it is difference 

of measures (10) makes it possible to estimate the distribution parameters. If the form of the function 

matches the sample of monitoring results, the distribution coefficients are equal to each other. Then 

from expression (10) follows the proportionality between the entropy potential and "Euclidean 

measure". Obviously, the difference in the entropy potentials of the theoretical distribution function and 

the sampling of monitoring results reflects the difference in “information measures” (or “entropy 

measures”) in some other information space of statistical distributions associated with the Euclidean 

space of sampling results using the entropy coefficient. 

4.3. Entropy–parametric measure of the events space 

In the space of the entropy potential and the mean square deviation, the position of the object is 

conveniently characterized by the entropy–parametric potential, that is as a measure of uncertainty of 

the object, equal to the distance from the center of the coordinates of the space to the point of position 

of the object. The expression for the entropy – parametric potential is 
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Analysis of the results of information processing in the construction of measurement systems, 

management and control depends on the definition of the parameters of the approximating functions. In 

this case, the choice of the parameters of the approximating function is achieved by minimizing the 

difference between the entropy – parametric potentials calculated by formula (11) for a sample of 

measurement results and a sample of the approximating function. 

A qualitatively new result is obtained by applying the entropy – parametric potential to a random 

value of the difference of the vectors of a sample of measurement results and a sample of an 

approximating function. The uncertainty interval is a scalar function defined in the entire set of values 

of the monitored parameter and is associated with the parameters of the distribution scatter: the standard 
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deviation and variance, entropy, etc. Mapping the measure of entropy uncertainty in the space of the 

Euclidean measure for experimental data and processing results is an effective tool for comparing them 

in the space of elementary events during processing based on the entropy-parametric approach. The use 

of informational and Euclidean measures in relation to the probabilistic space of elementary events 

allows us to construct an algorithm for finding the form of a function based on the intersection of the 

trajectory of the difference of informational and Euclidean measures. 
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