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Abstract. The research generates an integral relation of the energy equations for the temperature 

three-dimensional boundary layer allowing to integrate surfaces of any shape to determine 

thickness of energy loss. An equation to determine thickness of energy loss is necessary to 

specify heat transfer law and local heat transfer coefficients within boundary conditions of turbo 

machinery cavities. 

1.  Introduction 

In theory of turbo machinery of both compressor and expansion ones, while developing mathematical 

models, several design-boundary elements are focused: inlet and outlet devices in the stator housing; 

impeller channel; auxiliary hydraulic path formed by the gap between a rotor and a stator. 

While determining the functional relation, individual elements are located in a general turbo 

machinery model. For the compressed working bodies, the mechanical issue about changing the kinetic 

energy does not separate from the thermal energy; considering irreversibility and non-adiabatic flow in 

turbo machinery elements requires to determine functions for the local friction stress and heat transfer 

coefficient. Semi-empirical integral methods of boundary layer theory (dynamic and temperature) 

increasingly consider flat two-dimensional models for the linear problems [1-7]. Rotor spinning is used 

as the main technical motion in turbo machinery, trajectories and flow streamlines have got a shape of 

a spiral or a circle. If the flow lines are curved, then, in addition to the longitudinal differential pressure, 

there is also transverse pressure drop in the flow, balancing the action of centrifugal forces. In the 

boundary layer, where the pressure of the external flow is transmitted unchanged, this equilibrium is 

disturbed, since the centrifugal force, due to a decrease in speed, reduces. Equilibrium is restored by the 

action of friction forces of the secondary flow in the boundary layer directed opposite to the transverse 

pressure gradient that is from the concave side of the streamline of the external flow. The secondary 

flow velocities varying in thickness and directed to the centre of curvature of the streamlines cause 

transverse shear stresses in the body and on the surface of the body. Therefore, the total tangential stress 

on the surface of the body in the general case does not coincide with the direction of the streamlines of 
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the external flow, as it is the case in flat or axially symmetrical boundary layers. The velocity field of 

the secondary flow can have a complex structure and change its direction through the layer thickness. 

2.  Deriving an energy equation 

To solve the problem of local heat, transfer with transverse pressure gradient of flow at the external 

boundary of the boundary layer requires, as a rule, to use integral relations of the dynamic [8-9] and 

temperature spatial boundary layer (SBL). In the classical formulation, the integral relation of the energy 

equation of the temperature SBL is a differential equation in two unknowns: the thickness of the energy 

loss and the local heat transfer coefficient. 

For the case of the flow of an incompressible fluid, it is sufficient to solve together the equations of 

motion [8–9] and energy in the boundary conditions SBL, for a compressible fluid, the state equation is 

necessary to add to the system. Recording and integrating the energy equation of the temperature SBL 

is a separate, but significant task. 

The general view of the energy equation in the operator form [10] is: 

div divp

dT
С q Ф p c

d
  


    ,                               (1) 

where regarding to const  , absolute speed divergence is: 

c u w   , 

equal to zero, accordingly, the work of pressure forces is not considered in the energy equation (1): 

div 0p c  . (2) 

The divergence of the specific heat flow in natural curvilinear coordinates is: 

2div div(grad ) ( )

1 y y

y y

q T T

H H H HH HT T T

H H H H y y H H

  

   

 

  
   

  

          
                      

             (3) 

Considering that when analyzing the scale of quantities, the author [10] leaves only the terms with 

the coordinate of the orthogonal surface - the terms with 
y




, then the equation (3) regarding const  

will be written as: 

2 ( )
y y

H HT
T

H H H y y H

 

 




  
   

   
.                                                       (4) 

The total derivative with respect to temperature in natural curvilinear coordinates obtains the form: 

1 1 1

y

dT T T d T dy T d

d H dt H y dt H dt 

 

   

   
   
   

, 

finally, we have got an equation for the total derivative: 

y

dT T U T T w T

d H H y H 



   

   
   
   

.                                                     (5) 

The dissipative function in natural curvilinear coordinates is: 
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Ф
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w u w

H H H H y

  

  

 

  



  

           
                              

     
              

                     (6) 

Considering the results of value scales, in the dissipative term, the author [10] leaves only terms with 

u

y




 and 

w

y




, then the equation (6) simplifies: 

2 2

1 1

y y

u w
Ф

H y H y

    
    
       

.             (7) 

Taking into account (2; 4; 5; 7) and the absence of internal heat sources, which means 0  , the 

equation (1) will be: 

2 2

1 1
p

y y y y y

H HT u T T w T T u w
С

H H y H H H H y y H H y H y

 

   

 
 

  

               
             

                        .(8) 

We need to take into account that 1yH  , and Lame coefficient is H const  , H const  , while 

integrating along the y axis; the streamline flow is 0T    , then the final energy equation for the 

spatial boundary layer in the natural curvilinear coordinate system will take the form: 

2 22

2p

u T T w T T u w
С

H y H y y y 

   
 

           
                       

                              (9) 

We integrate equation (9) along the y coordinate within the boundaries of the boundary layer 

thickness. In this occasion, we take into account the equation for speed   (of the normal boundary 

surface), derived from the continuity equation: 

   

0 0

1
y yH u H w

dy dy
H H

 

 


 

  
   
  
 
  . 

We consistently integrate the terms of equation (9), starting from the left. We need to account that 

we inherently consider the function  0T T , where T  is temperature in the boundary layer; 0T  is a wall 

temperature. 

    
 

00

0

0 0 0

1 1
1

u T TT Tu u
dy dy T T dy A

H H H

  

    

    
    

   
   .                   (10) 

When integrating the second term, the integration method is used in parts: 

     
   

   0

0 00
0 0 0 0

1
.

y yH u H w H u H wT T
dy dy dy T T T T dy

H H

 
   

 


    

       
        
         

   
 

After the transformations, we obtain the equation for the second term. 
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2,

HT T T T T TT
dy udy udy wdy
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H H H

   
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   

  
 

    

 


  


   

  

 

       
       

      

  
     

  

 
    

 

   

  

 
 (11) 

where T  is temperature at the external boundary of the boundary layer. 

The integral of the third member is determined by the equation: 

    
 

00

0

0 0 0

1 1
3

w T TT Tw w
dy dy T T dy A

H H H

  

    

   
   

     .                     (12) 

Providing the equation to the specific heat flow is: 

 0T T
q

y

 




, 

due to Newton – Richman law  0q dQ dS T T   , the equation for the integral of the fourth 

term will be: 

 
 

2

0

0 0 02 0

0 0

4
T T q

dy dy q q q q T T A
y y

 


  
  

         
   .                  (13) 

For the equation of the fifth term (8) we need to highlight that for a turbulent boundary layer, a 

viscous layered flow is realized in a thin sublayer 
1 , where the velocity plot is linear and both 

u

y




 

and 
w

y




 are constant. We take into account that equation for friction stress is: 

u

y
 

 
  

 
;.

w

y
 

 
  

 
. 

The integral for the dissipative term transforms into: 

 
2 2

2 2

0 0

1u w
dy dy

y y

 

   


     
            

  .                                             (14) 

The integral in the boundaries from the wall to   is divided into two intervals. In the first interval 

from 0 to 1 , the derivative of the velocity is constant and not equal to zero, in the second interval from 

1 to  , the derivatives are constant an d equal to zero. Similar approximation of the power velocity 

profiles allows to integrate (14) in a simple way. Due to the friction stresses are constant and equal to 

friction stress at the wall, and the longitudinal and transverse components are related by the equation

   , we obtain: 
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   
 1

0

0 0 0 0

2 2

12 2 2 2

0 0

11 1
5dy dy A




   

  
   

  


      .                               (15) 

As it will be shown below, the conditional thickness will be included into the equation for friction 

stress and will not be among the influencing parameters. 

We record the sum of the terms (10), (11), (12), (13), (15): 

 1 2 3 4 5pC A A A A A    
. 

In this case, we take into account that the four components are mutually destroyed, in the equations 

  0

0

u T T
dy





 

  and 
  0

0

w T T
dy





 

  the sign of the integral and differential swap: 

 
   

   
 

     

0 0

0

0 0 0

0 0

0

0 0 0

1

0 0 0

0 0

1

1

1 1

p

HT T T T
C u T T dy udy udy

H H H H

H HT T T T
wdy w udy u T T dy

H H H H H

H
w T T dy w T T dy T T

H H H

  
 

   

  
  

    

 




  


  

  




 

      
       

      

   
     

   

  
        

   

  

  

 
 

0

2 1
.

 





                    (16) 

According to the authors’ recommendations [8-10] we introduce the notions of the energy loss 

thickness of the temperature boundary layer: 

– the thickness of the energy loss of temperature SBL in the longitudinal direction is: 

** 0

00

1t

T Tu
dy

U T T








 

  
 

 ;                                                        (17) 

– the thickness of the energy loss of temperature SBL in the transverse direction is: 

** 0

00

1t

T Tw
dy

U T T








 

  
 

 .                                                     (18) 

We group the equation terms (16) and divide to  0pC U T T  . Due to (17) and (18) we obtain the 

equation for the integral relation of the energy loss of the temperature spatial boundary layer: 

     
 

0

** ** 2

** **

0

11 1 1 1
,

t t

t t

p

H H
St

H H H H H H C T T

   

 

      

   
 

    

   
    

    
 

where Stanton criterion is 
p

St
C U




 .  

Figure 1 demonstrates Prandtl criterion impact on friction and heat transfer according to the research 

[8]. 
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Figure 1. Comparison of 

Comparison of various 

theories of the analogy 

between friction and heat 

transfer in turbulent 

flows when Re=107. 

 

 

Within Prandtl number values Pr<1 and Pr>1, the obtained theoretical dependencies agree with the 

dependencies by other researchers [8] in the case of non-dimensional coefficients of heat transfer in the 

form of Stanton criteria regarding to the integral relation of energy equation. 

3.  Conclusion 

We have obtained the integral relation of energy equation of the energy equation of the temperature 

three-dimensional boundary layer; it allows to integrate due to the surface of any form necessary to 

determine the thickness of the energy loss. The equations to determine energy loss thickness of the 

temperature three-dimensional boundary layer are required to specify local coefficients of the heat 

transfer for the specific occasions of flow taking into account the heat transfer. 
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