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Abstract. In this paper, an approach based on combining surface electromyography(sEMG) 

and three-axis acceleration(ACC) signal was proposed to recognize 5 different kinds basis 

daily gait patterns, including walking on the ground, going up stairs, going down stairs, going 

up slope and going down slope. Firstly, the gait related sEMG signal and three-axis ACC 

signal were collected from the lower limbs of subjects. Secondly, the de-noising of sEMG 

signal was finished and the segmentation of the fusion signal was done. Thirdly, the features of 

fusion signal were extracted. Finally, a classifier based on 2-stream hidden Markov model 

(HMM) was built to recognize 5 kinds of basis daily gait patterns. The experiment obtained an 

average recognition accuracy of 94.32%, which is 4.15% higher than the accuracy by adopting 

sEMG signal only (Average 90.17%), and 9.60% higher than the accuracy by adopting ACC 

signal only (Average 84.72%). The result demonstrated that it can improve the recognition 

accuracy of gait patterns effectively to combine sEMG signal and three-axis ACC signal. 

1. Introduction  

In recent years, due to the frequent occurrence of accidental injuries such as traffic accidents, work-

related injuries and natural disasters, as well as the continuous spread of such chronic diseases as 

cerebrovascular diseases, diabetes and osteoarthrosis, a considerable number of people have lost the 

ability to walk, bringing heavy burdens to families and society. Improving the quality of life of such 

patients and gradually restoring their walking ability have become the focus of social concern and the 

subject of medical rehabilitation [1]. 

The electromyography signal (EMG) is the source of the electrical signal that generate muscle force, 

reflecting the connection between neuromuscular activity and functional state. The electromyography 

signal is a weak bioelectrical signal from the neuromuscular activity in the process of human 

movement. It occurs after the intention of the brain movement is generated, and before the muscle 

actually contracts. It is a signal that is closer to the original intention of human movement [2]. 

Compared with only gathering dynamic information or image information such as posture and angle, 

gathering the myoelectric signal to recognize movement intention has obvious advantages. As a signal 

source, it can guarantee the real-time control [3,4]. 

Accelerometer(ACC) is a kind of motion sensor, which is wearable. Its analysis algorithm is relatively 

simple. And the real-time performance of accelerometer is good. The acceleration signal cannot only 

reflect the velocity information generated by daily behavioral movements over time and the motion 
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track information in space, but also provide the angular inclination information of daily behavioral 

movements relative to the direction of gravity acceleration. Therefore, it is widely used in daily 

behavioral movement detection and fall detection. Time domain features of acceleration signal are 

often extracted, such as simple threshold value, kurtosis, signal magnitude area (SMA) [5] and 

instantaneous change value of acceleration. Irene S et al. [6] used acceleration to recognize sitting, 

standing and walking, and obtained 99% accuracy.  

As both sEMG electrodes and ACC sensors have the advantages of low cost, miniaturization and 

portability, the research results of many scholars[7-9] showed that SEMG and ACC signal fusion 

technology was superior to single sensor in human movement intention recognition, which benefited 

from the advantages of sEMG signal in detecting fine movements and ACC signal in detecting large-

scale movements and behaviors. Roy et al.[10] used 8 accelerometers and 8-channel surface 

myoelectric signal to classify 11 recognition tasks and 10 non-recognition tasks, and obtained an 

average recognition rate of 90%. Zhang et al.[11] and Kosmidou et al.[12] applied SEMG and ACC 

signal fusion technology to continuous sign language gesture research, and the experimental results 

showed that the classification accuracy of two types of sensors was significantly improved than that of 

one type of sensor alone. 

However, most of the identified targets of the above research were the gestures recognition based on 

sEMG signal and ACC signal. There are few researches on human gait recognition. 

In this paper, the sEMG signal which can reflect the original intention of the human body and the 

ACC signal which can reflect the motion track information in space were combined. And a classifier 

based on 2-stream hidden Markov model (HMM) was built to recognize 5 kinds of human body basis 

daily gaits, including walking on the ground, going up stairs, going down stairs, going up slope and 

going down slope. 

 
2. EXPERIMENTAL SETUP  

2.1. Experimental Acquisition Equipment 

In this experiment, DELSYS Trigno™ Wireless EMG System (Delsys Inc., 20-450Hz band pass filter) 

was used as data acquisition system, as shown in Figure 1. The device is composed of Trigno charging 

base station and EMG smart sensors. Every sensor can simultaneously collect sEMG signal and three-

axis acceleration signal. 

5 typical lower limb gait patterns in human daily movement were selected, including walking on the 

ground, going up stairs, going down stairs, going up slope and going down slope.  

 

Figure 1. Acquisition of the sEMG singals and ACC signal. 

2.2. Experimental Platform 

The experimental platform consists of staircase, slope and flat panels, as shown in Figure 2. The 

staircase has 6 steps. The height of the steps is 150mm, which is widely used. The slope is 15°，which 
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is the barrier-free access angle. The number of the gait cycle that subjects can complete on the 

experimental platform relate to personal walking habits, which is generally 3-4.  

 

Figure 2. Experimental Platform. 

2.3. Experimental Procedure 

5 subjects (3 males and 2 females) who are with an age range from 20 to 27 years participated in this 

experiment. As Figure 3 shown, five muscle groups were selected to collect signal:  

(1) rectus femoris(sensor1); 

(2) vastus medialis(sensor2); 

(3) vastus lateralis(sensor3) ; 

(4) medial gastrocnemius(sensor4) ; 

(5) lateral gastrocnemius(sensor5). 

 

Figure 3. Positions of sensors. 

3. Data Processing Method 

3.1. SEMG Signal De-noising 

In the process of signal collection, the sEMG signal was affected by noise, environment and other 

factors. Analyzing the signal directly will lead to many errors and reduce the recognition rate of gait 

patterns. So it is necessary to reduce sEMG signal noise.  
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In this paper, wavelet packet de-noising method was adopted. Sym8 wavelet was selected to 

decompose the sEMG signal in 4 layers. Then the threshold value of each layer was obtained. Soft 

threshold method was used to reduce noise of the signal. Figure 4 shows the comparation between the 

original sEMG signal and the de-noising sEMG signal of vastus medialis when subject was going 

upstairs. 

 

Figure 4. Comparison of SEMG Signal Before and After the Signal De-noising 

3.2. Segmentation 

This article defined that the movement from the measuring side foot just touching land to the next time 

measuring side foot just touching land as an active segment. According to the previous research, the 

general time of an active segment is 1.3s-1.6s. When the fusion signal is used to recognize various 

gaits directly, sending the fusion signal to the recognition system is too long, which will cause a 

perceptible delay to the user. Therefore, the active segment was segmented by sliding window method. 

It is generally believed that the user will not feel the delay if the time interval between the muscle 

contraction of the lower limb and the corresponding gait by the recognition system is less than 300ms 

[13]. In the experiment, the sliding window length was set as 128ms. And the window increment was 

set as 64ms. 

3.3. Feature Extraction 

Each windowed data was extracted. 

3.3.1. sEMG Feature Extraction 

5 kinds features were calculated, including the mean absolute value (MAV), standard deviation (STD), 

zero crossings (ZC), waveform length (WL) and 4-order AR coefficients of sEMG signal of each 

window for every channel as the features. Then, all the features of 5 channels will combine to form the 

sEMG feature vector. These features are capable of representing the waveform amplitude, frequency 

and duration [13-14]. Finally, a 40-dimension sEMG feature vector(named sEMG) was obtained.  

The mean value (MEAN) represents the average intensity of a segment of sEMG signal. The 

calculation formula is as follows: 

 𝑀𝐴𝑉 =
1

𝑁
∑ |𝑥(𝑖)|𝑁
𝑖=1  (1) 

The standard deviation (STD) reflects the intensity of signal deviating from its average value, and 

reflects the change range and intensity of sEMG signal during movement. The calculation formula of 

standard deviation is as follows: 



EECR 2019

IOP Conf. Series: Materials Science and Engineering 533 (2019) 012060

IOP Publishing

doi:10.1088/1757-899X/533/1/012060

5

 

 𝑆𝑇𝐷 = √
1

𝑁−1
∑ (𝑆(𝑖) − 𝑆̅)2𝑁
𝑖=1  (2) 

where  the calculation formula of  𝑆̅  is as follows: 

 𝑆̅ = √
1

𝑁
∑ 𝑆2(𝑖)𝑁
𝑖=1  (3) 

The zero crossings (ZC) reflects the change of the intensity of the sEMG signal. The calculation 

formula is as follows: 

 𝑍𝐶 = ∑ 𝑠𝑔𝑛(−𝑥(𝑖)𝑥(𝑖 + 1))𝑁−1
𝑖=1  (4) 

 𝑠𝑔𝑛(𝑥) = {
1        𝑥 > 0
0        𝑒𝑙𝑠𝑒   

 (5) 

The waveform length (WL) is the cumulative value of the waveform over a period of time. The 

calculation formula is as follows: 

 𝑊𝐿 = ∑ |𝑥(𝑖 + 1) − 𝑥(𝑖)|𝑁−1
𝑖=1   (6) 

Auto-Regressive(AR) model is widely used for its outstanding performance in time series analysis, 

which is suitable for short data analysis. The sEMG meets the requirements of this parameter model. 

In the AR model, sEMG can be seen as the product of a linear system motivated by a white noise 𝑒(𝑖) 
with zero mean [15-16]. Therefore, the feature parameters of AR model can be extracted as the 

features of gait pattern recognition. The AR model was established as follows: 

 𝑥(𝑖) = ∑ 𝑎𝑘 × 𝑥(𝑖 − 𝑘)
p
𝑘=1 + 𝑒(𝑖) (7) 

where 𝑥(𝑖) is the sEMG of 𝑖th sample point, 𝑎𝑘  is the 𝑖th coefficient of AR model, p is the order 

number of AR model, 𝑒(𝑖) is white noise residual, which obeys normal distribution. In this experiment, 

4 order AR model empirically, i.e. p=4。 

3.3.2. Acceleration Signal Feature Extraction 

For a three-axis acceleration sensor, the data collected each time can be represented as a vector 

 = (𝑎  𝑎  𝑎 ). Firstly the mean value (MEAN) and the standard deviation (STD) of each window 

for each axis were caculated. Then a 12-dimension feature vector from acceleration data of both 

sensors(named ACCa) was extracted. Secondly, the modulus of vector   was calculated: 

 | | = √𝑎 
2 + 𝑎 

2 + 𝑎 
2 (8) 

then, unitize  : 

   𝒆 =
 

| |
 (9) 

The three-axis data of three-axis accelerometer are related to the attitude of the sensors, i.e. the attitude 

of thighs and calves. Even if the attitude of body cannot be calculated accurately by the ACC signal 

when the lower limbs is moving, the accelerometer sensor data can be used to get some useful 

information that can represent the attitude in a certain extent. For an acceleration sensor, an 

assumption can be made that kinematic acceleration will not significantly influence the direction of 

resultant acceleration when subjects are moving, which means the magnitude of the acceleration of 

gravity dominates [17].Then a estimation is made that the direction of gravity is the same as   under 

five movement patterns[18]. So the modulus of kinematic acceleration is: 



EECR 2019

IOP Conf. Series: Materials Science and Engineering 533 (2019) 012060

IOP Publishing

doi:10.1088/1757-899X/533/1/012060

6

 

 𝑎𝑚 = | − 𝑔 ×  𝟎| (10) 

where 𝑔 is the modulus of the gravitational acceleration. 

Although this is not an accurately estimate of motion posture, they can represent posture information 

in a certain extent. Finally, the MEAN and STD of  𝒆 ,  | |  and 𝑎𝑚  in each window of both 

acceleration sensors was calculated to obtain a 20-dimensional feature vector(named ACCb).  

So, by combining ACCa and ACCb to get a 32-dimensional acceleration feature vector (named ACC). 

4. Classifier 

A 2-stream hidden Markov model (HMM) classifier was selected to recognize the gait patterns. HMM 

is a statistical analysis model, which was established in the 1970s. It was spread and developed in the 

1980s and became an important direction of signal processing. HMM is a dual-random process. On the 

one hand, it is a kind of Markov chain. Its state cannot be directly observed, but can be reflected 

through the observation sequence. On the other hand, each observation vector is represented as each 

state by some probability density distribution, so each observation vector is generated by a state 

sequence with a specific probability density distribution. HMM can be described by five elements: 

 λ=( A , B , π , N , M ) (11) 

Where N  is the number of hidden states, and  M  is the number of observations that can certain 

probability distribution for each state. A , B and π are three different probability matrices. A is the 

hidden state probability matrix. B is the observation sample probability matrix. And   is the initial 

probability distribution matrix, which is usually assigned the same value during initialization. 

The main steps of training and classification of gait patterns adopting 2-stream HMM[19], are as 

follows: set sEMG and ACC signal feature sequence as  = *     +  .    is sEMG signal 

observation sequence,    is ACC signal observation sequence. For training samples of known gait 

patterns,  = *     +, the Baum-Welch algorithm was used to train the classifier. Then a 2-stream 

HMM was gotten of each gait pattern, i.e.   = *  
    

 +, where   represents a kind of unknown gaits 

patterns. In this paper, the hidden state number N of HMM was empirically set to 5. And the 

probability distribution of each observation value was modeled by a 3-order Gaussian mixture model 

[20]. 

In the testing phase, for unknown gait patterns, the likelihood probability of the observation sequence 

was calculated in all the gait pattern HMMs, i.e.  ( |  
 )  ( |  

 ) 1     , where   is the number 

of all the movement patterns. This paper will recognize 5 kinds gait patterns so that C=5. Then the gait 

pattern was identified as the gait pattern of the 2-stream HMM which produced the maximum sum of 

likelihood probability, i.e.: 

  ∗ = arg ( max
1≤ <C

 (  |  
 ) + (  |  

 )) (12) 

5 Result and Discussion 

The size of window length was set as 128ms meanwhile the increment size was set as 64ms. Half of 

the feature vector dataset was used as training sample to train classifier. And the other half was used as 

testing dataset to test the performance of classifier. For comparing the recognition accuracies of 

differient data sources, the experiment was performed with different datasets from: 

(1) sEMG; 

(2) ACC; 

(3) sEMG+ACC. 

The recognition accuracy for 5 kinds of basis daily gait for 3 kinds of datasets was calculated, as 

shown in Table 1. And Figure 5 is the bar chart form of Table 1. 
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Table 1. Recognition accuracy of 3 kinds of datasets. 

 SEMG ONLY ACC ONLY SEMG+ACC 

WALK 91.18% 87.27% 94.63% 

UP STAIR 89.34% 81.06% 93.36% 

DOWN STAIR 89.33% 86.16% 95.33% 

UP SLOPE 89.36% 83.16% 94.65% 

DOWN SLOPE 91.65% 85.96% 93.65% 

AVERGE 90.17% 84.72% 94.32% 

 

Figure 5. Recognition accuracy bar chart of 3 kinds of datasets. 

Figure 5 and Table 1 show that the recognition accuracy by adopting the fusion of sEMG and ACC 

(Average: 94.32%), is 4.15% higher than that by adopting sEMG only (Average: 90.17%), and 9.60% 

higher than that by adopting ACC only (Average: 84.72%). This indicates that combining sEMG 

signal and ACC signal can improve the recognition accuracy compared to only adopting sEMG signal 

or ACC signal. 

Combining sEMG signal and ACC signal is a good choice for lower-limb exoskeleton to identify 

human gait patterns. But for people with disabilities who need prostheses because of amputation, it is 

impossible to collect the sEMG signal and ACC signal from calf. Therefore, the signal from thigh only 

was selected to identify the gait pattern. The recognition accuracy of five motion patterns was obtained, 

which adopted sEMG and ACC signal of thigh. The result is shown in Table 2.  And the results are 

compared with the results adopting all the signal, as shown in Figure 6. 

Table 2. Recognition accuracy of adopting thigh dataset only. 

 WALK 
UP 

STAIR 

DOWN 

STAIR 

UP 

SLOPE 

DOWN 

SLOPE 

Accuracy 91.23% 89.27% 87.65% 88.99% 88.29% 

Average 89.09% 
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Figure 6. Recognition accuracy bar chart of adopting thigh signal only and adopting all signal. 

Only through adopting sEMG signal and ACC signal of thigh, the recognition accuracy obtained is 

low. This is because the data provided by the three sEMG signal collection points at the thigh and an 

acceleration sensor at the front of the thigh cannot accurately distinguish the five basic gait patterns. 

This cannot meet the requirements of active prosthesis for identifying the motion intention of 

prosthesis wearers. In the future, research will be continued to study how to obtain higher lower-limb 

intention recognition rate without collecting data information of the calf. The gait patterns recognition 

rate of prosthetic wearers will be improved by increasing the sEMG signal collection points at the 

thigh and placing an acceleration sensor at the upper body, etc. 

6. Conclusions 

Gait patterns recognition has been studied and achieved good recognition results in other previous 

study. But the selection of sensor signal in those studies usually focused on the sEMG signal. The 

experiment in this paper showed that more useful movement information could be obtained by 

combining sEMG signal and ACC signal, which help improve the recognition accuracy.  

This paper proposes methods to improve the recognition accuracy of gait pattern by combining sEMG 

signal and ACC signal. Experimental result shows that this method can successfully improve the 

recognition accuracy in a statistically significant way. The recognition accuracy by adopting the fusion 

of sEMG signal and ACC signal (Average: 94.32%), is 4.15% higher than that by adopting sEMG 

signal only (Average: 90.17%), and 9.60% higher than that by adopting ACC only (Average: 84.72%). 

This indicates that combining sEMG signal and ACC signal can improve the recognition accuracy 

compared to only adopting sEMG signal or ACC signal. 
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