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Abstract. In the customary underfill (CUF) epitome process, there are couple of 

downsides experienced for instance, extended filling time, divided filling and voids 

improvement. Test and FVM reenactments have been directed to examine CUF 

dispensing systems for different types of ball grid array (BGA) tendencies out of a 

solitary layered PCB. In this task, the principle point is to enhance the stream of under 

filling mold crosswise over multi-stacks BGA. Package on Package (PoP), a strategy 

for coordinated circuit bundling, is utilized to consolidate BGA bundles vertically to 

permit higher segment thickness in devices. The L-type liquid stream in multi-stack 

BGA with edge introduction is contemplated and parameters of CUP exemplification, 

for example, void development and filling time were examined. The results 

demonstrated that the BGA sizes with the little weld balls put at the base layer, trailed 

by the medium size bind balls in the center stack and the biggest patch balls at the top 

layer has appeared to enhance the stream rate of the encapsulant ideally. Other 

arrangement in which the medium size solders placed are at the base layer, small solders 

at the center layer and largest solders on top of it, requires longest total filling time. The 

result also shows that the racing effect is present at central region and at the side of the 

layer. Because of the perimeter orientation design, the void formation is minimal and 

the race effect is not affecting much according experimental and computational result. 

This investigation additionally uncovers the capability of air gaps in improving velocity 

and pressure distribution near inlet and outlet to achieve faster total filling time at all 

layers of the BGA.   

1.  Introduction 

Underfill encapsulation process is a process in which the space between the silicon die and the PCB is 

filled with the underfill encapsulant that redistributes the induced stress thereby enhancing the solder 

reliability [1-2]. This underfill process consists of apportioning a managed measure from fabric into an 

opening among chip and substrate. It is also determined crucial for ensuring and rising unwavering first-

class of the digital packaging (EP). It can lessen the global thermal expansion, stresses and pressure 

within the silicon chip and substrate.Hole among the chip and silicon should totally dispatched with 

underfilling mildew for the purpose of making certain life of the chip meeting [4]. Affiliation among 

underfill mould and solder bumps may actuate doable void or air pocket formation and solder bump 

harmed because of inappropriate dedication of underfill material and processing parameter [2-5]. Thus, 

superior comprehension at underfilling process is critical and can be done through virtual modeling 

method [6-7]. 

In the stream of new technologies nowadays, Electronic industries are seeking for towards smaller 

scale electronic chip packaging process along with rises in functionality and the demand for multi stack 

chip is highly desirable[8]. Due to this matters, multi stack BGA are now being under researched. The 
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research that have been made by Bart et.al focuses on stress analysis through for the underfilling material 

and substrate [8]. Meanwhile, the simulation and experiment observation that were conducted by 

Abdullah et.al showed that the flow was halted as it flows over the chip due to tiny gap height. They 

also make a calculation to show that the minimum die top clearance is 0.25mm for flip chip to prevent 

from short shot issues [9]. In other research, Ernest et.al performed a research on flip chip with a series 

of experiments and simulations to handle the encapsulation flow and chip deformation. These 

researchers provide some insight on the stress distributions during the encapsulation process [10].  

Based on the research that made by Chen et.al, thermal mode analysis is used to optimize thermal 

management to identify optimal locations and size of multi chip package. The average thermal resistance 

is analyzed throughout the investigations and found that thermal resistance matrix is independent of 

power dissipation [11].  

This research, focuses on ball grid array (BGA) sizes effect to the fluid flow simulation. There 

are rarely research and investigation that has been conducted on the size variation of multi stacks BGA. 

The related Ansys software tutorials are studied to have an understanding on the fluid flow simulation. 

A modification is done on Ansys Fluent in order to generate the multi-stacks ball grid array (BGA) with 

perimeter orientation of spherical solder bump array subjected to fluid flow. Various parameters like 

filling time, flow front pattern, pressure and velocity dissemination are examined based on real world 

encapsulant liquid. A comparison is then made between simulation and experimental result of the fluid 

flow.  

2.  Methodology 

2.1.  Experiment Detail 

In order to enhance the visualization aspect of the micro-sized package a scaled-up experiment is 

constructed. The BGA models are scaled-up by at least six-time bigger than the real ball grid array 

(BGA) size for ease of newability. The design parameters of the models are summarized in table 1. 

 

Table 1: Parameter of BGA model 

 

Parameter  Actual size    Scale up size 

Parallel plates (mm) Not applicable 108 (L) x 108 (W) x 5 (T) 

Bump Diameter (mm) 0.5 2.9 and 5.5 

Bump Pitch (mm) 1.0 5.8 and 11.0 

Bump Height (mm) 0.495 2.4 and 4.9 
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Figure 1: Schematic experimental scaled – up setup for the study of different size of multi stack ball 

grid array. 

The epoxy-molded compound (EMC) used as the encapsulant material with its properties are 

summarized in Table 2 as stated below. 

  

Table 2: EMC encapsulant material properties 

Parameter Value 

Density (kg/m³) 1843 

Specific heat capacity (J/kg-K) 1163 

Thermal conductivity (W/m-K) 0.8 

Molecular weight (kg/kgmol) 44.05358 

Dynamic Viscosity (Pa-s) 2.2 

Kinematic viscosity (mm2/s) 2111.3 

Standard state enthalpy (J/kgmol) -1.653202e+08 

Reference temperature (K) 298.00001 

2.2.  Numerical Simulations 

2.2.1.  Equations 

2.2.1.1 Navier – Stokes Formulation. The governing equations based on Navier-Stokes equation is 

used to simulate the encapsulant material and air through the use of conservation of mass 

and momentum. In the encapsulation system, both fluids are assumed to be incompressible 

and laminar 

 

Continuity equation: 

 ∂ρ

∂t
+ +∇. (ρu⃗ ) = 0 

(1) 
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Navier – stokes equation: 

 

 ∂

∂t
(ρu⃗ ) + ∇. (ρu⃗ u⃗ ) = −∇P + ∇. τ̿ + ρg⃗  

          (2)  

 

In the version, EMC and air are differentiated using multiphase formulation. The quantity of fluids 

(VOF) for each levels is described the use of transport equation at the same time as the distribution of 

fluid is represented via quantity fraction, f in the range of zero <f <1. Generally, f=0 imply the absence 

of EMC whilst f=1 imply the cell is completely full of EMC. 

Transport equation: 

 

 𝑑𝑓

𝑑𝑡
+ ∇. (𝑢̅𝑓) = 0            (3)  

2.2.1.2 Capillary Force Formulation. The underfill fluid flows through the ball grid array (BGA) 

primarily based on the capillary motion without the assistance of the outside pressure. There 

are two regions in the fluid capillary waft movement which can be wetting and non-wetting 

fluid place. The underfill fluid is inside the non-wetting region.The capillary pressure is 

defined as the pressure difference between wetting and non-wetting fluid. The equivalence to 

atmospheric pressure can be considered since the non-wetting fluid is air. 

 

 𝐶𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒, ∆𝑃𝑐 = 𝑃𝑛𝑤 − 𝑃𝑤    (4) 

 

 
                                          =  

2𝜎

𝑏
 

(5) 

 

Where 𝜎 the fluid surface tension and b is is the gap height. 

The equation 6 and 7 show that capillary pressure is proportional to surface tension and inversely 

proportional to the gap height. There are two conditions as shown below: 

 
∆𝑃𝑐 > 

2𝜎

𝑏
 

(6) 

 

The pressure of non-wetting fluid is greater than the pressure of the wetting fluid. Thus, the fluid in 

non-wetting region will filled or move to the wetting region (underfilling process phenomenon). 

 
∆𝑃𝑐 < 

2𝜎

𝑏
   

(7) 

 

The pressure of non-wetting fluid is lower than the pressure of the wetting fluid. Thus, the fluid in the 

non-wetting region will remain static. 

3.  Results & Discussion 

3.1.  Model validation 

Two sets of experiments with different solder ball arrangements were carried out for a scaled-up BGA 

model. The top views of the model are recorded during the filling process of the viscous encapsulant 
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into the cavity in the L-type dispensing. The simulation results of the flow front profile obtained from 

simulation results were compared with the experimental results. Generally, judging from the observation 

for all two set of experiments of flow front profile, it shows a good relation between the experimental 

works and computational simulation throughout the CUF encapsulation process at different filling times. 

Figure 2 and 3 present the comparison between the flow front profile of experimental works and 

computational simulation at four distinct filling percentages specifically 20%, 40%, 60% and 80%. This 

particular case is further emphasized through the data plot of filling time with reference to Figure 2, and 

3, the arrangement of beads size among two set of experiments is shown below: 

 

Note: Diameter of large, medium and small beads are 5.5mm and 2.9mm respectively. 

 

From the flow front profile shown in Figure 2 and Figure 3 the problem of racing effect is present 

where the speed of encapsulant varies at different location. At the bumps-free region like central region, 

it is observed that the flow rate tends to be higher as there is lower resistance to flow whereas flow rate 

slows down at the bumps region such as the sides of layer, causing the effect of racing effect and 

possibility of incomplete filling or void formation. Since the orientation of all two sets of experiment 

are perimeter design, the experimental and computational result are not affected much by the racing 

effect in terms of filling time and void formation. 

 

 

Set  Size of Beads  

Layer Top Middle Bottom 

A Small Medium Large 

B Large Small Medium 
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Figure 2: Flow Front Pattern (Experimental vs Simulation) of Set A 
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Figure 3: Flow Front Pattern (Experimental vs Simulation) of Set B 

3.2.  Filling time 

According to the experimental and simulation findings, it was found that set A consumes least filling 

time compared to set B that requires longest time for both layers. Noticeably, longer filling time is 

expected for larger size of beads as it takes substantial amount of encapsulant to fill up the larger gap 

height between layers. The filling time for for different percentage of perimeter orientation can be 

referred to Table 3 and Table 4. Besides, it can be observed that filling rate at set A is very persistant 

than set B. 

Table 3: Experimental filling time 

 

Percentage of 

filling (%) 

Set A B 

Layer Top Middle Bottom Top Middle  Bottom 

0 0 0 0 0 0 0 

20 18 12 6 20 14 17 

40 38 25 12 32 22 27 

60 57 35 21 42 30 36 

80 70 46 31 59 42 46 

100 84 59 55 85 60 65 
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Table 4: Simulation filling time 

 

Percentage of 

filling (%) 

Set A B 

Layer Top Middle Bottom Top Middle  Bottom 

0 0 0 0 0 0 0 

20 17 13 8 23 13 19 

40 41 28 10 33 24 28 

60 58 34 19 42 31 33 

80 74 41 29 58 44 40 

100 87 57 51 88 59 66 

4.  Conclusion 

This study disclosed the impact of BGA size arrangement filling time, pressure dissemination, and 

velocity dissemination of CUF encapsulation on BGA packaging. The research was conducted by the 

approach of experiments and FVM numerical simulations. Two layers of BGA with different sizes 

(bump diameter of 2.9 and 5.5) in the perimeter orientation are used to determine the best arrangement 

for constant flow rate and shortest total filling time on L-type dispensing methods. 3-dimensional 

simulation model with dimensions of 108mm x108mm is generated based on volume of fluid (VOF) 

method to duplicate the fluid flow phenomenon through BGA which can be used to testify with the data 

obtained from experiments. 

The fluid filling time for BGA size arrangement where the small solders are placed at bottom 

layer, followed by medium-sized solders and the large solders at the top layer is much faster arrangement 

since it has smallest gap height to be filled by the fluid at the bottom layer. It also provides the most 

uniform flow rate at all two layers. Looking at the flow front pattern for all two set of models, it presents 

a good relation between the experimental works and computational simulation and throughout the CUF 

encapsulation process at different filling times. Racing effect can be seen as the difference of encapsulant 

speed at different location. The fluid advances faster in the bump-free region where it has lower 

resistance to flow, whereas the flow is obstructed by the solder bumps at the bumps region. However, 

the racing effect is not very obvious and severe for the perimeter orientation. 
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