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Abstract. Three distinct flip-chip underfill cases were considered in this work, with each possess 

a bump pitch of 0.8 mm, 1.0 mm and 1.2 mm. Contact line jump (CLJ) phenomenon during the 

underfill flow were successfully visualized with the aided of finite volume method (FVM) based 

simulation. The current simulated underfill flow fronts were qualitatively validated with the 

existing experimental data. Generally, the attachment process occurs much faster than the 

detachment process, by a factor of 14. Within the investigated pitches range, shorter bump pitch 

would yield a slower underfill flow but a faster-completion underfill process. The voiding 

mechanism during the underfill process were presented. Furthermore, the dynamic contact angle 

of underfill meniscus were analytically computed from the numerical data. The contact angle is 

found to be varies sinusoidally with the filling time, while the impact of bump pitch is minimal. 

Lastly, it is found that the bump pitch of flip-chip does affect the void formation and propagation. 

Keywords: Bump pitch; contact line jump (CLJ); dynamic contact angle; flip-chip encapsulation; 

underfill process 

 

1.  Introduction 

To enhance the reliability electronic package and device, underfill encapsulation is performed during 

the assembly manufacturing process at the chip or substrate levels. During the underfill process, a special 

type of adhesive fluid is introduced to the gap beneath the chip and substrate, which prior hardening it 

would form a harden layer. This protective layer would solve the thermal mismatch issue and serves as 

mechanical resistance to the fragile joints of the chip device. Upon realizing the particular importance 

of this underfill process, several researches were conducted from various point-views and methodology, 

with an ultimate aim to optimize and enhance the process and subsequently the package reliability [1 – 

7]. 

Contact line jump (CLJ) is a phenomenon occurred during the underfill meniscus approaching 

the bump array or detaching the bump. This was firstly discovered by Young [8-9] and later 

experimentally observed by Lee et al. [10-11]. Later, Yao et al. had incorporate the idea of CLJ in 

formulating new filling time model [12]. 
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There are several literatures that studied the effect on solder bump pitch on the underfill flow. 

They concluded that the decrease in bump pitch of flip-chip will substantially increases the filling time 

[10-12]. Eventually, Wan et al. had analytically developed the concept of critical clearance of flip-chip 

for effective underfill process [13]. On other hand, the effect of contact angle on underfill flow is vital 

[14-15]. 

This paper is devoted to study the underfill encapsulation process in flip-chip of varying bump 

pitch using the finite volume method (FVM) numerical scheme. The current numerical model is 

quantitatively validated to the existing experimental data [10] on the entrance and exit flow fronts. 

Through simulation, the occurrence of CLJ and the influence of bump pitches can be investigated. 

Additionally, the contact angle of underfill flow front is determined. These findings may benefit the 

optimization and enhancement works on underfill process. 

  

2.  Numerical simulation 

In this paper, the finite volume method (FVM) based commercial software, Ansys is adopted to 

numerically model the underfill flow during the flip-chip encapsulation process. Navier-Stokes (N-S) 

and continuity equations were governed and solved using the FVM scheme. On the side of mathematical 

model of flip-chip, there were three variations with different bump pitches, 𝑤 of 0.8 mm, 1.0 mm and 

1.2 mm (respectively dimensionless pitch, 𝛼 of 1.6, 2.0 and 2.4). However, all flip-chips have same 

bump diameter, 𝑑 of 0.5 mm and gap height, ℎ of 0.45 mm. These flip-chip parameters were defined in 

Figure 1. Further, the solder bumps were in quadrilateral arrangement and a side length of 0.5 mm. The 

whole bump array is set at 3 × 2 so the flow meniscus can be securitized. The underfill flow pattern is 

repetitive along each row of bump, therefore only two rows were considered in current simulation. A 

Newtonian fluid of density 1600 kg/m3, viscosity 1.5 Pa-s and surface tension, 0.012 N/m was used as 

the underfill material. The underfill fluid is continuously dispensed to the flip-chip along one edge side, 

mimicking the I-type single inlet dispensing method. The computational models were meshed with fine 

tetrahedral setting with proximity on. Multiphase volume of fluid (VOF) is chosen to track the 

advancement of flow front of underfill fluid. This underfill simulation is modelled to be transient, 

laminar and incompressible flow. The transient time step used is 0.01 s with a maximum of 20 iterations 

per time step. For boundary conditions set are: 0 Pa gauge pressure on both flow inlet and outlet, no-slip 

on walls and capillary pressure flow front. Lastly, the numerical simulated flow fronts will be compared 

with the existing experiment data by Lee et al. [10] on the flip-chip case with dimensionless pitch of 2.0. 

As validation, a qualitative comparison on the flow fronts at different filling stages (i.e. the attachment 

jump and detachment jump) was performed and presented in Figure 2. 

 

 

Figure 1. The geometrical representation of a flip-chip. 
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3.  Result and Discussions 

Figure 2 depicts the side-by-side comparison of experimental [10] and numerically simulated flow front 

of underfill fluid in the flip-chip with linear density, 𝛼 = 2 .This serves as a validation study to 

qualitatively verify the accuracy of numerical model and subsequent findings. It is found that the 

simulated flow fronts are in great consensus with the experimental findings at respective filling stages 

in terms of meniscus shape and flow front position. Our numerical simulation also able to capture the 

occurrence of contact line jump in both the entrant and exit (as in Figure 2 (ii) and Figure 2 (iv) 

respectively), similarly to that being reported in the experimental works [10]. 

 
Figure 2. Validation study of simulated flow front (right) of underfill front in flip-chip bump array by 

comparing to the corresponding experimental flow fronts (left) by Lee et al. [10], for different filling 

stages of underfill flow. 

Figure 3 gives the filling time plots for the underfill flow at various filling stages, for instance attachment, 

propagation & voiding and detachment. Generally, all filling time plots show monotonically increasing 

trend. On the trending of bump pitches, smallest bump pitches constitute for the longest filling time as 

evident in the flip-chip case of 0.8 mm pitch, which is consistent with the conclusions attained by past 

literatures [10 – 12]. The narrow gap between two adjacent bumps in flip-chip of lower pitch is found 

to be substantially hindering the detachment process; while the effect of bump pitch on bump attachment 

process is not significant. Besides, it is found that the attachment jump when the flow front first approach 

the bump array occurred instantaneously, within 0.05 s (refers Table 1). On contrary, the detachment 

jump is a slow process, where the flow front took up to 0.70 s to detach away from the bump array (see 

Table 3). Furthermore, the overall trend of underfill fluid flow across the bump array is decelerating, as 

being exhibited by the exponential curve in filling time plot in Figure 3. 

During the propagation of underfill fluid across the bump array, voids start to form due to the 

interaction with bump surface by the entrapment of air. Table 2 depicts the voids formed after the 

underfill flow entered bump array. It is found that the air voids tend to form behind the solder bump, as 

the flowing underfill fluid is being obstructed by the bump array. Such inelastic collision with the solder 

bump not only reduces the flow rate, but also cause the formation of undesired defect – air void – which 

is potent to the package reliability. 

(i) Approaching bump array (ii) Attach jump 

(iii) Exiting bump array (iv) Detach jump 

Underfill fluid Air 
Experiment [10] Simulation 
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Figure 3. Filling time plots of underfill flow at three filling stages for flip-chips with bump pitches of 

0.8 mm, 1.0 mm and 1.2 mm. 

 

Table 1. Stage I – underfill meniscus attachment to the solder bump. 
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Table 2. Stage II – propagation of underfill meniscus and void formation. 
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Figure 4 presents the plot of volume fraction filled by the underfill fluid at different filling time 

for all three flip-chips system. The simulation data were fitted into polynomial equations with a high 

correlation coefficient of 𝑅 > 0.998. It is observed that in the flip-chip of lowest bump pitch (i.e. 0.8 

mm) yields highest volume fraction filled by underfill fluid over the time. This appeared to be 

contradicted to the finding in Figure 3. Such discrepancy is caused by the fact the total volume of flip-

chip with smaller bump pitch is lower. Therefore, upon comparing the volume fraction filled, an opposite 

trend is being observed instead. It is interesting to observed that the total volume of flip-chip outweighed 

the influence of bump pitch on the filling time. Therefore, the underfill process of flip-chip with smaller 

bump pitch can be completed faster, but not account for faster underfill flow. 
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Figure 4. Plot of underfill-filled volume fraction against time for the flip-chip of different bump 

pitches: 0.8 mm, 1.0 mm and 1.2 mm.  
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 Figure 5 shows the side-view of the underfill flow in the gap between substrate and flip-chip, 

together with its geometrical representation to analytically compute the contact angle, 𝜃 . By 

trigonometry, the angle can be mathematically written as follows: 

 𝜃 = cos−1 [
4𝛽

1+4𝛽2 
], (1) 

where 𝛽 = 𝓉/ℎ.  The contact angle of the underfill meniscus at different time for all three flip-chips were 

computed and plotted in Figure 6. A sinusoidal trend is observed for the plot of contact angle against 

time. This inferred the contact angle of the underfill fluid is not statics but rather dynamic, strongly 

influenced by the flow time. However, there is no significant effect of bump pitches on the variation of 

contact angle. The dynamic contact angle is an intrinsic material property of the underfill fluid itself, 

and not bounded to the geometrical parameter of the flip-chip. 

 

Figure 5. Measurements of meniscus’s contact angle, 𝜃 from (a) the simulated VOF flow front; (b) the 

geometrical interpretation of underfill’s meniscus, as viewed from the side. 

 
Figure 6. Plot of dynamic contact angle of underfill fluid meniscus at different filling time, for flip-

chips with various bump pitches. 
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Figure 7 depicts the VOF and gauge pressure contours for three flip-chip cases at the time of 

5.00 s. Consistent to the boundary conditions applied, the flow front’s gauge pressure is negative due to 

the capillary action while the unfilled air region is at the atmospheric pressure of 0 Pa. The air void is 

found to possess a positive gauge pressure. Void is a sack of compressed air that being surrounded by 

the underfill fluid. The dynamic propagation of the air void formed in each flip-chip cases were 

quantitatively visualized in Figure 8. It is found that the initial position of the void formed significantly 

affects its propagation, such that the void that formed directly behind the bump (𝜑 < 90°) would travels 

slower to escape the vicinity of bump (𝜑 > 180°). The initial void favours to form at directly behind 

the bump for the flip-chip configuration with the shortest bump pitch of 0.8 mm (Void 1).  

 

Figure 7. Underfill volume fraction profiles and pressure distributions at the stage IV at the simulation 

time of 5.00 s. Three air voids, with each from array of different bump pitch, were circled and marked 

as Void 1, Void 2 and Void 3 respectively. 

 
Figure 8. The plot of angular positions of Void 1, Void 2 and Void 3 (respectively from bump array 

with pitches 𝑤 = 0.8 mm, 𝑤 = 1.0 mm and 𝑤 = 1.2 mm) relative to the center of solder bump.  
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4.  Conclusions 

Using finite volume method (FVM) based numerical scheme, the underfill flow across the bump array 

are successfully simulated alongside with the contact line jump (CLJ) phenomenon during both the 

attachment and detachment. In term of filling time, detachment process is significantly much slower 

than the attachment process. The effect of bump pitch on the filling time of underfill flow is investigated 

by consider the flip-chips of different pitches: 0.8 mm, 1.0 mm and 1.2 mm. It is revealed that lower 

pitch leads to slower underfill flow but faster completion of the underfill process. The bump pitch is 

found to affect the detachment process to a significant extend, where the time taken for the meniscus to 

detach away from the bump is higher in flip-chip with small pitch. Besides, the voiding process during 

the advancement of underfill along the bump array is observed from the current simulation work. 

Undesired defect – void – is formed due to the entrapment of air during the underfill fluid first contact 

with the solder bump. Lastly, the variation of contact angle of underfill fluid along the filling time is 

analysed and found that the contact angle varies in a sinusoidal manner. These findings justified that the 

FVM numerical simulation is capable in study the underfill flow from the viewpoints of CLJ, void and 

dynamic contact angle. 
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