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Abstract. Chipping in ceramic cutting inserts during machining can cause detrimental effects on 

the surface finish quality of the workpiece. Current methods of detecting chipping in ceramic 

inserts do not compare the minute changes in the workpiece profile in subsequent machining 

passes. In this work, an effective method of detecting chipping in ceramic inserts by analysing 

the workpiece surface profile using cross-correlation is proposed. In this method, the sub-pixel 

edge location method was used to extract the surface profile captured using a digital camera. 

Surface profiles corresponding to subsequent machining passes were cross-correlated at three 

different sections of the workpiece. An abrupt drop in the correlation coefficient was observed 

in the middle and end sections of the workpiece after the fifth machining pass, thus providing a 

reliable measure of tool chipping. 

1.  Introduction 

Ceramic cutting tool inserts are the preferred type of cutting tools for the machining of hard and difficult-

to-cut materials such as alloy steels. This is due to their high hot hardness and wear resistance. However, 

due to their inherent low toughness ceramic inserts have be reported to undergo ladder-like chipping, 

cracking and fracture during machining [1-3]. Since failure of a cutting tool during machining will cause 

a detrimental effect on the finished product, the early detection of wear in the cutting tool is an important 

area of research. Although a significant amount of research has been published on the offline and in-

process detection of wear in cutting tools [4-7], most of these researches are limited to carbide tools. 

The detection of wear and chipping in ceramic cuttings inserts has been investigated only by a few 

researchers. 

Neslušan et al. [8] developed a method to detect the breakage of ceramic cutting tools during hard 

turning by analyzing acoustic emission (AE) signals. AE signals are known to be sensitive to the plastic 

deformation processes linked with dislocation slips during machining of ductile materials or brittle 

cracking. The authors used two AE sensors with different frequency ranges to detect machining changes 

before and after tool breakage. This method, however, is not sensitive to detect the occurrence of 

chipping in the ceramic tool. Lee at al. [9] used fast Fourier transform (FFT) to detect the onset of 

chipping in commercial ceramic cutting inserts. The edge profile of the workpiece was extracted to sub-

pixel accuracy and the extracted profile was transformed from the spatial domain to the frequency 

domain using FFT. During gradual wear the amplitude of the fundamental feed frequency was observed 

to increase steadily, but after the onset of tool chipping significant fluctuations in the feed frequency 

was observed. Although this method was shown to be effective in detecting the onset of chipping the 

edge profiles before and after chipping were not compared quantitatively. In a later publication [10], the 



ICRAIEM 2018

IOP Conf. Series: Materials Science and Engineering 530 (2019) 012007

IOP Publishing

doi:10.1088/1757-899X/530/1/012007

2

 

 

 

 

 

 

authors applied the sub-window FFT and continuous wavelet transform (CWT) methods to detect the 

onset of chipping in ceramic tools. They reported that compared to the sub-window FFT method the 

CWT method is more effective in detecting the exact onset of tool chipping. The authors also 

investigated the effectiveness of the autocorrelation method in detecting chipping in ceramic inserts by 

analyzing the workpiece profile captured using a digital camera [11]. The authors reported that chipping 

in the tool caused the peaks of the autocorrelation function to decrease rapidly with increase in lag 

distance. The correlation was made between profiles recorded from the same section of the workpiece 

but at different angles. The profiles at various parts of the workpiece were not cross-correlated to detect 

chipping in the tool. 

Besides the work done by Lee et al. [9-11] there is very little published literature on the detection of 

chipping in ceramic cutting tools. Many researchers have reported the problem of chipping in ceramic 

cutting inserts but a reliable method of detecting chipping is yet to be developed. The aim of this paper 

is to propose a vision-based method combined with sub-pixel edge location and cross-correlation to 

detect the occurrence of chipping in commercial cutting tools during dry turning.  

2.  Methodology 

2.1.  Experimental setup and image capture 

The dry turning operation was conducted by using a 45 mm diameter AISI 305 stainless steel workpiece 

of length 200 mm. The machining was done on a Pinocho S90 conventional lathe machine by using 

ceramic insert cutting tool from Sandvik Coromant Ltd., Sweden. The workpiece was mounted securely 

at both ends to ensure there is minimum vibration during turning (Figure 1(a)). The machining was 

carried out using a cutting speed of 1400 rpm, feed rate of 0.3 mm/rev and a depth-of-cut of 1 mm. A 

high cutting speed and feed rate were used to accelerate the rate of wear in the ceramic insert. The 

machining was done for five passes. After each pass the workpiece was removed from the lathe to 

capture the profile. The cutting tool insert was also removed and observed under that scanning electron 

microscope. The machined length was divided into three sections, namely start, middle and end, for the 

surface analysis (Figure 1(b)). A high-resolution DSLR camera (pixel resolution: 5184 × 3456 pixels) 

fitted with a macro lens was used to capture the edge profile of the machined workpiece with the aid of 

backlighting (Figure 1(c)). The intensity of the backlighting was controlled appropriately to ensure the 

image is not too bright or too dark. The surface of the workpiece was cleaned using a jet to compressed 

air before capturing the images. The workpiece was shifted using a translation stage in order to capture 

images at various sections. Four images were captured at each section by rotating the workpiece by 90.  
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Figure 1. (a) Machining setup, (b) various section used in analysis, (c) setup for capturing 

workpiece profile. 

2.2.  Profile extraction using sub-pixel edge location 

Figures 2(a) shows the sample raw image of the workpiece profile captured after the first pass. The 

profile of the workpiece surface was extracted using the invariant-moment sub-pixel edge detection 

method originally proposed by Tabatabai and Mitchell [12]. In this method a scan line across a step edge 

is characterized by a set of numbers 𝑥𝑖, where i= 1, 2, 3, …, n. The edge is defined between a sequence 

of pixels at one intensity level h1 followed by a sequence pixels at another intensity level h2 as illustrated 

in Figure 2(b). The first three moments m1, m2 and m3 of the input data sequence are given by a threshold 

independent method based on grey level moment equations, whereby the moments are defined as a sum 

of the pixel intensity powers. The ith moment of the input grey level data sequence xj is given by  

          

 𝑚̅𝑖 =
1

𝑛
∑ (𝑥𝑗)𝑖𝑛

𝑗=1   (1) 

                                       

where x1, x2,…, xn are pixel intensities and n is the total number of pixels in row j. If k denotes the 

number of h1 values in the ideal edge, then the first three samples moments between input and output 

sequences can be solved in three equations by: 

 

 𝑚̅𝑖 = ∑ 𝑝𝑗ℎ𝑗
𝑖2

𝑗=1   (2) 

    

where i = 1, 2 and 3, and ph = number of pixels with grey intensity values h. 

With the three unknowns h, k and p2, the solutions of the edge are calculated by: 

 
ℎ1 = 𝑚̅1 − √

𝑝2

𝑝1
  

(3) 

   

 

ℎ2 = 𝑚̅1 + √
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𝑝2
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𝑝2 =
1

2
[1 + 𝑠√

1

4 + 𝑠2] 

(5) 

   

 𝑝1 = 1 − 𝑝2 (6) 

 

   

where  𝜎 =  √𝑚̅2 − 𝑚̅1
2 and 𝑠 defined as the skewness of the input data sequence given by,  

 

 
𝑠 =

2𝑚̅1 + 𝑚̅3 − 3𝑚̅1𝑚̅2

𝜎3
 

(7) 

 

Thus, the edge location of the workpiece up to sub-pixel accuracy is determined by: 
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 𝑘 = 𝑝1𝑛                 (8) 

 

 

The invariant moment method of sub-pixel edge detection allows precise edge location as shown by the 

red line in Figure 2(c). 

2.3.  Simulation analysis using cross-correlation 

Cross-correlation is essentially a measure of similarity between two signals as a function of displacement 

of one relative to the other. For two continuous function f(t) and g(t) the cross-correlation is given by 

the dot product, 

 
𝑓 ∗ 𝑔 = ∫ 𝑓∗(𝑡)𝑔(𝑡 + 𝜏)𝑑𝑡

∞

−∞

 
(9) 

                                                                                       

where f* is the complex conjugate of f and  is the displacement, also known as the lag distance. For 

discrete function such as the digitized surface profile, the cross-correlation is defined as, 

 
𝑓 ∗ 𝑔 = ∑ 𝑓∗(𝑘)𝑔(𝑘 + 𝑙)

∞

𝑛=−∞

 
(10) 

                   

where k is a measure along the signal length and l is the lag distance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ℎ1 

ℎ2 

Grey level 

Position 

Step edge (sub-pixel edge 

location) 

𝑝2𝑛 𝑘 = 𝑝1𝑛 

High intensity 

pixels 

Low intensity 

pixels 

(a) 

(b) 



ICRAIEM 2018

IOP Conf. Series: Materials Science and Engineering 530 (2019) 012007

IOP Publishing

doi:10.1088/1757-899X/530/1/012007

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Extraction of workpiece edge profile to sub-pixel level: (a) raw image, (b) grey value 

variation in the invariant moment method, (c) extracted profile (shown in red). 

 

Figures 3(a)-(c) show three simulated profile, whereby Figure 3(a) is assumed to be shaped by a new 

cutting tool, Figure 3(b) is formed by a slightly worn cutting insert while Figure 3(c) is formed by a 

badly worn cutting insert. The corresponding extracted profiles are shown in Figures 4(a)-(c). 

 

(a)  

 

(b)  

 

(c)  

 

Figure 3. Simulated profiles: (a) formed by new insert, (b) formed by slightly worn inset, (c) 

formed by badly worn insert. 
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(a)                                                (b)                                                     (c) 

Figure 4. Extracted profiles corresponding to Figures 3(a)-(c). 

 

The result of cross-correlating the profiles in Figure 4(a) with Figure 4(b) and Figure 4(a) with Figure 

4(c) is shown in Figure 5(a) and 5(b). Although the correlation plots look the same the maximum 

correlation value when the insert is slightly worn is 0.9931 while the corresponding value when the 

insert is badly worn is 0.9539. The maximum positive correlation coefficient thus gives a measure of 

the wear condition of the insert. 

  
 

Figure 5. Plot of cross-correlation for (a) slightly worn insert, (b) badly worn insert. 

3.  Results and Discussion 

Figures 6(a)-(e) show the workpiece edge profiles at various stages of machining and the insert image 

captured at the end of each pass. The gradual change in the profile during the first four passes is clearly 

noticeable while there is a rapid change in profile from the 4th to the 5th pass. The gradual profile change 

can be attributed to the gradual loss of tool material during turning while the rapid change in the profile 

is due to chipping (highlighted in yellow on the insert image).  

 

(a)          

 

(b)          
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(c)          

 

(d)          

 

(e)          

 

Figure 6. Workpiece edge profile and tool insert after (a) 1st pass, (b) 2nd pass, (c) 3rd pass, (d) 4th 

pass and (e) 5th pass. 

 

     In order to investigate the changes in profile in greater detail the length of profile equivalent to three 

feed spacing were cropped manually from the original image. Each image was rescaled to accommodate 

slight variation in the camera-to-workpiece distance after each machining pass. The cropped image was 

then subjected to sub-pixel edge location. The extracted edge profiles after the 2nd to the 5th passes were 

compared to the profile after the first pass. The extracted data were realigned so that the peaks in the 

subsequent passes match those in the first pass. Figures 7(a)-(l) shows the comparison between the 1st 

pass with subsequent passes at the start (Figures 7(a)-(d)), middle (Figures (7(e)-(h)) and end (Figures 

7(i)-(l)). The start, middle sections of the workpiece are shown in Figure 1(b). 

     Comparison of the profiles shows that a significant change in the profile is visible after the 5th pass 

in all sections of the workpiece. This can be attributed to the significant loss of cutting tool material due 

to chipping as seen in insert image in Figure 6(e). Comparison of the changes in the profile between the 

1st and subsequent passes at the various sections show that the middle and end sections of the workpiece 

produce very consistent results compared to the start section. The fluctuation in the profiles in the start 

section, especially after the 1st and 4th passes show the possible presence of vibration as the tool first 

comes in contact with the workpiece. As machining proceeds to the middle and end section the vibration 

effect has diminished and the changes in the workpiece profile due to tool wear and chipping becomes 

dominant. 

 

    
(a) (b) (c) (d) 
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Figure 7. (a)-(d) Comparison of surface profiles of workpiece between 1st and subsequent passes at: 

(a)-(d) start,(e)-(h) middle and (i)-(l) end of workpiece. 

 

     Figure 7 only shows a visual comparison of the profiles before and after tool chipping. In order to 

develop an automatic method of detecting chipping in the insert it is necessary to analyse the cross-

correlation between these profiles. The maximum cross-correlation coefficients for the profiles are 

shown in Figure 8. Neglecting the data from the start section it can be seen that the maximum cross-

correlation coefficient drops to below 0.8 after tool chipping. Thus, the correlation coefficient criteria 

for tool chipping can be set to 0.8 for the in-process detection of chipping in ceramic inserts.  

 

 
Figure 8. Comparison of cross-correlation coefficients for different machining passes. 

4.  Conclusion 

A simple, yet effective, method of detecting chipping by analysis of the workpiece surface profile is 

proposed. Comparison of the surface profiles before and after chipping using cross-correlation shows a 

sharp decrease in the coefficient value after chipping. The study has also shown that the profiles 

compared should be extracted from the middle or end of each machining pass for better accuracy. The 

proposed method can be implemented for in-process tool chipping detection by capturing and processing 

the images in real-time during a turning process. 

Acknowledgement 

Part of this work was supported by the RU(I) grant (no. 1001/PMEKANIK/8014013). The authors would 

like to thank Universiti Sains Malaysia for the offer of the grant. 

References 

 

[1] Song J, Huang C, Lv M, Zou B, Liu H and Wang J 2014 Cutting performance and failure      

mechanisms of TiB2-based ceramic cutting tools in machining hardened Cr12MoV mold 

steel International Journal of Advanced Manufacturing Technology 70 495-500 



ICRAIEM 2018

IOP Conf. Series: Materials Science and Engineering 530 (2019) 012007

IOP Publishing

doi:10.1088/1757-899X/530/1/012007

9

 

 

 

 

 

 

[2] Lima F F, Sales W F, Costa E S, da Silva F J and Machado A Á R 2017 Wear of ceramic tools 

when machining Inconel 751 using argon and oxygen as lubri-cooling atmospheres Ceramics 

International 43 (2017) 677–685  

[3] Tan D-W, Guo W-M, Wang H-J, Lin H-T and Wang C-Y 2018 Cutting performance and wear 

mechanism of TiB2-B4C ceramic cutting tools in high speed turning of Ti6Al4V alloy 

Ceramic International (online 25 May 2018) In Press 

[4] Mikołajczyk T, Nowicki K, Bustillo A and Yu Pimenov D 2018 Predicting tool life in turning 

operations using neural networks and image processing Mechanical Systems and Signal 

Processing 104 503-513 

[5] Henrique L, Maia A,  Abrao A M, Vasconcelos W L, Sales W F and Machado A R 2015 A new 

approach for detection of wear mechanisms and determination of tool life in turning using 

acoustic emission Tribology International 92 519-532 

[6] Gutnichenko O, Bushlya V, Zhou J and Ståhl J-E 2017 Tool wear and machining dynamics when 

turning high chromium white cast iron with pcBN tools Wear 390-391 253-269 

[7] Rmili W, Ouahabi A, Serra R, Leroy R 2016 An automatic system based on vibratory analysis      

for cutting tool wear monitoring Measurement 77 117-123 

[8] Neslušan M, Mičieta B, Mičietová A, Čilliková M and Mrkvica I 2015 Detection of tool breakage 

during hard turning through acoustic emission at low removal rates Measurement 70 1-13 

[9] Lee W K, Ratnam M M and Ahmad Z A 2016 Detection of fracture in ceramic cutting tools from 

workpiece profilesignature using image processing and fast Fourier transform Precision 

Engineering 44 131-142 

[10] Lee W K, Ratnam M M and Ahmad Z A 2017 Detection of chipping in ceramic cutting 

inserts from workpiece profile during turning using fast Fourier transform (FFT) and 

continuous wavelet transform (CWT) Precision Engineering 47 406-423 

[11] Lee W K, Ratnam M M and Ahmad Z A 2016 In-process detection of chipping in ceramic 

cutting tools during turning of difficult-to-cut material using vision-based 

approach International Journal of Advanced Manufacturing Technology 85 1275-1290 

[12] Tabatabai  A J  and Mitchell OR 1984  Edge location to subpixel values in digital imagery 

IEEE Transactions on Pattern Analysis and Machine Intelligence 6(2) 188-201 

https://www.sciencedirect.com/science/article/pii/S0263224115001815#!

