
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Kinetics of rapid crystal growth: phase field theory versus atomistic
simulations
To cite this article: P K Galenko et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 529 012035

 

View the article online for updates and enhancements.

This content was downloaded from IP address 123.134.247.94 on 18/09/2019 at 18:51

https://doi.org/10.1088/1757-899X/529/1/012035
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/850113009/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICASP5-CSSCR5

IOP Conf. Series: Materials Science and Engineering 529 (2019) 012035

IOP Publishing

doi:10.1088/1757-899X/529/1/012035

1

Kinetics of rapid crystal growth: phase field theory
versus atomistic simulations

P K Galenko1,2,5, A Salhoumi2,3 and V Ankudinov2,4

1 Friedrich-Schiller-Universität-Jena, Faculty of Physics and Astronomy, Otto Schott Institute
of Materials Research, 07743 Jena, Germany
2 Ural Federal University, Theoretical and Mathematical Physics Department, Laboratory of
Multi-Scale Mathematical Modeling, 620000 Ekaterinburg, Russia
3 University of Hassan II Casablanca, Faculty of Sciences Ben M’Sik, Department of Physics,
Laboratory of Condensed Matter Physics (LPMC), BP 7955 Casablanca, Morocco
4 Udmurt State University, Department of Physics and Energetics, Laboratory of Condensed
Matter Physics, 426034 Izhevsk, Russia

E-mail: peter.galenko@uni-jena.de, ahmedsalhoumi@gmail.com, vladimir@ankudinov.org

Abstract. Kinetics of crystal growth in undercooled melts is analyzed by methods of
theoretical modeling. Special attention is paid to rapid growth regimes occurring at deep
undercoolings at which non-linearity in crystal velocity appears. A traveling wave solution of
the phase field model (PFM) derived from the fast transitions theory is used for a quantitative
description of the crystal growth kinetics. The “velocity – undercooling” relationship predicted
by the traveling wave solution is compared with the data of molecular dynamics simulation
(MDS) which were obtained for the crystal-liquid interfaces growing in the 〈100〉-direction in
the Ni50Al50 alloy melt.

1. Introduction
Interface kinetics at high driving forces of growth/melting of crystals have received special
attention due to advanced experimental techniques [1, 2, 3]. In fact, the rapid solidification
front may undergo diffusionless (chemically partitionless) transformation which may proceed in
wide or narrow intervals of driving forces [1, 3, 4]. In such case, the crystal growth kinetics often
exhibit the non-linear behavior [5] which is not predicted by the traditional kinetic theories or
phase field models (PFM) based on local thermodynamic equilibrium [6]. Recent attempts to
describe non-linearity in the crystal growth velocity by the local equilibrium phase field model
with the mobility extracted from molecular dynamics simulation (MDS) are limited so far by a
small interval of driving forces [7] in comparison with a wide range of undercooling attained in
atomistic simulations for the crystal growth kinetics [8, 9, 10, 11, 12].

The present work extends the kinetic equation formulation presented for description of growth
kinetics of Ni-crystal in Refs. [13, 14] to investigation of crystal growth kinetics from the
undercooled Ni50Al50 melt. Tang and Harrowell [12] published the data of MDS for the growth
of Ni50Al50 crystals growing in the 〈100〉-direction which are used by us as a reference to check
consistency of our kinetic equation and consistency of the well-known Wilson-Frenkel kinetic
equation formulated as an outcome of the diffusion limited theory (DLT).
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2. Diffusion Limited Theory
In application to the melting/crystallization, the kinetic rate theory (or thermally activated
growth theory [15]) compares two atomic fluxes at the moving crystal-liquid interface: the first
one goes from the liquid over to crystal per unit time at a single kink or atomic micro-roughness,
and the second one comes from crystal to liquid if the atomic configuration in liquid favors to
solid atoms detachment. This results in the non-zero interface velocity [4] which is proportional
to the temperature dependent kinetic growth coefficient, βk(T ), having various atomistic theories
adopted to the concrete growth mechanism of crystals depending of the absolute temperature
T and the Gibbs free energy change on transformation ∆G given by

∆G = Gs(T,C)−Gl(T,C)

{
< 0, solidification,
> 0, melting,

(1)

where Gl(T,C, φ) and Gs(T,C, φ) are the Gibbs free energies of the liquid and solid phases,
respectively.

The diffusion-limited mechanism of growth as was analyzed by Wilson and Frenkel [16, 17],
using the approximation ∆G� kBT and a simplest expression for the driving force [18],

∆G = ∆Hf (−∆T )/Tm, ∆T = Tm − T, (2)

yields the Wilson-Frenkel equation taking into account the liquid diffusivity and expressing the
solid-liquid interface velocity V as

V = β
(DLT )
k ∆T =

a

λ2
f0D(T )

∆Hf

kBT 2
m

∆T, (3)

with β
(DLT )
k stands for the kinetic coefficient in the framework of DLT, a is the spacing between

crystalline layers, λ is the mean free path of atoms, f0 is the fraction of collisions with the crystal
that contributes to the growth of the crystal, ∆Hf is the melting enthalpy, D(T ) is the diffusion
coefficient taken as [4] D(T ) = D0 exp(−∆EB/kBT ) with the diffusion prefactor D0 = Λ2ν̃/6,
given by [19], where ν̃ is the frequency of thermal vibrations of an atom in the crystal and the
liquid, Λ is an elementary diffusive jump distance of particles in the liquid, EB is the activation
energy for diffusion, Tm is the melting (crystallization) point temperature, kB is the Boltzmann
constant and ∆T is the undercooling which is necessary for non-zero attachment/detachment of
atoms in the case of solidification/melting. This undercooling is defined in the dendrite growth
models as the “kinetic undercooling” [2, 3, 20, 21].

In Eq. (3), DLT introduces the diffusion transport coefficient D(T ) of the supercooled liquid
and, therefore, the kinetic coefficient exhibits the strong temperature dependence associated
with an activated process. Quantitative estimations of kinetic growth coefficients for various
crystal growth models can be found in Refs. [8, 11] as obtained from atomistic simulations
and in Ref. [20] as obtained from experimental measurements. However, DLT has difficulties
to quantitatively describe the growth kinetics for a wide range of temperatures [8, 9]. The
results of calculations by Eq. (3) for pure Ni in comparison with data of MDS [5, 11] are
given in Ref. [14] from which follows that (i) in the relatively small range of undercooling
and overheating, the MDS-data exhibits linear behavior for the interface velocity, both
in melting and in crystallization that is well described by DLT; (ii) for the large range
of undercooling, the predictions of DLT behaves inconsistently in comparison with MDS-
data qualitatively and, as a consequence, quantitatively.



ICASP5-CSSCR5

IOP Conf. Series: Materials Science and Engineering 529 (2019) 012035

IOP Publishing

doi:10.1088/1757-899X/529/1/012035

3

3. Phase Field Model
Consider a binary mixture consisting of solvent and solute undergoing phase transition,
solidification/melting, from the undercooled/overheated state for which the free energy is
described by

G =

∫
v0

[
ε2φ
2
|~∇φ|2 +G(T,C, φ, ∂φ/∂t)

]
dv0, (4)

where v0 is the volume of the mixture, εφ is the gradient energy coefficient related to the interface
energy γ, φ is the phase field variable defined as φ = 0 in the liquid phase and φ = 1 in the solid
phase, ∂φ/∂t is the gradient flow for the phase field, and C is the solute concentration.

Introducing the phase field φ and gradient flow ∂φ/∂t as independent thermodynamic
variables in the Gibbs potential G(T,C, φ, ∂φ/∂t) can be considered in the full analogy with
Newtonian mechanics, where the initial position and velocity of a particle must be specified
to determine their evolution and velocity. Indeed, if inertial effects are sufficiently low in
comparison with dissipative effects during phase field propagation, ∂φ/∂t will be determined
directly by a dynamical equation in terms of φ and its gradient. Otherwise, φ and ∂φ/∂t will be
independent and an equation for ∂2φ/∂t2 must be found [22, 23]. Therefore, the Gibbs potential
G(T,C, φ, ∂φ/∂t) which is a combination of local equilibrium contribution, Geq(T,C, φ), and
local non-equilibrium contribution, Gneq(T, ∂φ/∂t), takes the following form,

G(T,C, φ, ∂φ/∂t) = [1−p(φ)]Gl(T,C)+p(φ)Gs(T,C)+Wφ(T,C)g(φ)+(αφ(T )/2) (∂φ/∂t)2 , (5)

where p(φ) is the interpolation function p(φ) = (3 − 2φ)φ2, g(φ) is the double-well function
g(φ) = (1 − φ)2φ2 [24], Wφ(T,C) is the barrier between phases, αφ(T ) is phenomenological
coefficient being proportional to the relaxation time τφ of the gradient flow ∂φ/∂t which is
introduced as independent thermodynamic variable [25]. The latter term in Eq. (5), which is
proportional to (∂φ/∂t)2, is considered as the kinetic energy term added to Gibbs potential [26].

A stable evolution of the entire system is given by the Lyapunov condition of non-positive
change of the total Gibbs free energy in time [27]. Application of this condition to the
functional (4) yields the following phase field equation [13]

τφ
∂2φ

∂t2
+
∂φ

∂t
= Dφ∇2φ−Mφ

[
∆G

dp(φ)

dφ
+Wφ(T,C)

dg(φ)

dφ

]
, (6)

where the Gibbs free energy difference ∆G is defined by Eq. (1) and the diffusion coefficient
of the phase field Dφ(T ) = ε2φMφ(T ) is essentially depends on the temperature if the phase

transition is considered in a wide temperature range [28].
The hyperbolic equation (6) describes relaxation of two variables: relaxation of the slow φ-

field by the first time derivative and relaxation of the gradient flow, ∂φ/∂t, by the second time
derivative. In this sense, due to introducing relaxation of ∂φ/∂t, Eq. (6) describes the evolution
of the local non-equilibrium system. Further we show how it is important to use of the gradient
flow relaxation and, consequently, what is the role the local non-equilibrium in fast crystal growth
kinetics. On one hand, Eq. (6) admits, in the equilibrium state ∆G = 0, Gs(T,C) = Gl(T,C),
one dimensional steady solution φ(x) = (1/2) [1− tanh (x/δI)] , at ∂φ/∂t = 0 along the
spatial x-axis with the stationary width of diffuse interface δI = εφ

√
2/Wφ(T,C) and the

surface energy of the crystal-liquid interface γ = δIWφ(T,C)/6. On the other hand, Eq. (6)
has, in the dynamic state ∆G = Gs(T,C) − Gl(T,C) 6= 0, one dimensional traveling-wave
solution φ(x, t) = (1/2) [1− tanh ((x− V t)/`)] [13, 29]. This particular solution with the
hyperbolic tangent function follows from the general set of analytical solutions of Allen-Cahn-
type equations [30] which is given in the present model by Eq. (6). In this solution, the crystal
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growth velocity V is limited by a maximum speed of phase field propagation, Vφ because the
phase field itself dictates the interface shape and its velocity, i.e. V < Vφ, [13]. In the simplest
approximation ∆G� kBT (see Eq. (2)) the velocity has the following form [31]

V = β
(PFM)
k ∆T =

Dφ(∆T )∆Hf

γTm

√
1 +

[
Dφ(∆T )∆Hf

γTmVφ(∆T )
∆T

]2∆T, (7)

which is consistent with the approximation of kinetic equation (3) and for which the kinetic

coefficient, β
(PFM)
k , depends on the undercooling ∆T . The maximum speed Vφ of phase field

propagation in Eq. (7) is defined by the diffusion of the phase field as

Vφ(∆T ) =
√
Dφ(∆T )/τφ, (8)

where the relaxation time τφ is taken as a constant independent from the temperature in the
present analysis.

The diffusion coefficient of phase field in Eqs. (7) and (8) is given by

Dφ(∆T ) = D0
φ exp

(
− EA
Tm −∆T − TA

)
, (9)

where the diffusion factor D0
φ, the energetic barrier EA and the pseudo-glass transition

temperature TA are parameters of the phase field propagation. The form of Eq. (9) is similar
to the form of phase field mobility Mφ(T ) given in Ref. [28] and it shows that, as soon as the
undercooling approaches its critical value, the phase field diffusion begins its steep decrease
down to its zero value.

Table 1: Material parameters for Ni50Al50 used in calculations

Parameter Set 1 Set 2 Reference

Melting temperature, Tm (K) 1520 1520 [9, 12]
Enthalpy of melting, ∆Hf (J · m−3) 1.74 ×109 1.74 ×109 [21]
Interface energy, γ (J · m−2) 0.24 0.24 [21]
Pseudo-glass transition temperature, TA (K) 950 950 present work
Relaxation time, τφ (s) 8.22 × 10−11 → 0 present work
Diffusion factor, D0

φ (m2 · s−1) 1.10 × 10−8 1.06 × 10−8 present work

Energetic barrier, EA (K) 368.19 403.07 present work

4. Predictions of DLT and PFM in comparison with MDS-data
Previously, the nonlinearity in the growth kinetics having a form of the velocity with saturation
has been described for pure Ni [13, 14]. However, there are other type of non-linearity in the
“velocity – undercooling” relationship which is presented by the crystal growth velocity curve
having a maximum at fixed undercooling [8, 9, 10, 12]. Such curves are typical for glass forming
metals and alloys. PFM-solutions summarized by Eqs. (7)-(9) shall now be tested against
MDS-data found in growth kinetics of Ni50Al50 crystals [12]. Note that Ni50Al50 belongs to
congruently melting alloys which are solidifying without chemical segregation. Therefore we do
not need to introduce constitutional effects in consideration and Eqs. (7)-(9) can be used to
describe the growth of Ni50Al50 crystals without chemical contributions. All calculations have
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Figure 1: Comparison of growth kinetic equations based on Diffusion Limited Theory (DLT)-
and Phase Field Model (PFM) (curves) with data kinetics of molecular dynamics simulations
(MDS) of Tang and Harrowell [12] for Ni50Al50-crystals in the 〈100〉 direction (◦ ). Calculations
are given by: (i) DLT (· · · · · ·), Eq. (3) with λ ≈ 2.25a, Λ ≈ 4a and the other constants from
[9, 12]; (ii) PFM without relaxation (- - - -), Eqs. (7)-(9) with τφ → 0, Vφ → ∞ and all other
parameters are given by Set 2 from Table 1; (iii) PFM with relaxation (——), Eqs. (7)-(9) with
τφ 6= 0, finite Vφ and other parameters given by Set 1 from Table 1.

been made using material parameters for Ni50Al50 from Table 1, where the relaxation time, τφ,
the diffusion factor, D0

φ, and the energetic barrier, EA, are considered as free parameters at a
fixed pseudo-glass transition temperature, TA. They can be obtained from molecular dynamics
simulation (e.g., τφ) and from phase field simulations (e.g., D0

φ and EA).

Figure 1 shows that Wilson-Frenkel equation (3) based on DLT (dotted curve) describes well
the molecular dynamics data for the growth of Ni50Al50 crystals (open circle) only for smallest
values of undercoolings. Beyond the small undercooling, Wilson-Frenkel equation (3) disagrees
with MDS-data despite its tendency to reach the maximum value of growth velocity.

Two cases for solution of Eqs. (7)-(9) have been considered and plotted in Figure 1: with
the local non-equilibrium effect (τφ 6= 0, Vφ is finite) and without it (τφ → 0, Vφ → ∞).
With no local non-equilibrium effects, the predicted velocity well describes data of atomistic
modeling only at very small and very high undercooling (see dashed curve which is obtained
with the new parameters of EA and D0

φ from Table 1 providing the better fit to data of

simulations). If, however, the local non-equilibrium effect is included, we recover perfectly the
atomistic simulation data in the entire undercooling range and the growth rate (solid curve).
The solidification kinetics of glass forming alloys is well described by the theory which includes
local non-equilibrium effects in the form of relaxation of the gradient flow in the phase field.
Therefore, good comparison with MSD-data confirms our initial theoretical assumption in PFM
about the predominant influence of local non-equilibrium effects in crystal growth under large
driving forces.

5. Conclusions
• The non-linearity in the “interface velocity – kinetic undercooling” behavior was described

by the traveling wave solution of the PFM for Ni50Al50 crystals growing in the 〈100〉-
direction. This non-linearity was found for the velocity with maximum at the fixed value
of undercooling.
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• Predictions of the developed PFM and DLT have been compared with the data of MDS for
Ni50Al50-crystals growing in a wide range of undercoolings.

• The Wilson-Frenkel equation based on DLT describes the data of MDS only for limited
range of undercoolings and disagrees elsewhere despite its tendency to reach the maximum
velocity at fixed undercooling.

• Using the traveling wave solution of PFM the MDS-data are predicted perfectly if the
deviation from local thermodynamic equilibrium is taken into account in the form of local
relaxation of the gradient flow of the phase field. Such good prediction of MSD-data confirms
an existence of the local non-equilibrium effect on the growth kinetics of crystals under large
driving forces.
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