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Abstract. Observations of melting crystallites in microgravity showed unusual shape changes
as melting proceeded toward extinction. When re-analyzed in 2011, shape evolution data showed
needle-like crystallites becoming spheroids as they melted toward extinction, suggesting that
some type of capillary phenomenon at solid-liquid interfaces was responsible for an energy release
capable of spherodising particles on melting, and stimulating pattern formation during unstable
crystal growth. The presence of these previously undetected energy fields was recently uncovered
using phase-field simulations that employ an entropy density functional. Simulations allow
measurement of interfacial energy distributions on equilibrated solid-liquid interfaces configured
as stationary grain boundary grooves (GBGs). Interfacial energy source fields—related to
gradients in the Gibbs-Thomson temperature—entail persistent cooling along GBG profiles,
a new result that fully confirms earlier predictions based on sharp-interface thermodynamics.
This study also provides new insights to improve microstructure control at reduced scales by
explaining the thermodynamic fields responsible for pattern formation in castings.

1. Introduction
Solidification microstructures remain subjects of importance, as they affect the mechanical and
chemical properties of primary metals, cast alloys, solder joints, and fusion welds. The origins of
complex pattern formation in general [1, 2], including those observed throughout nature, such
as snow flakes and crystalline minerals, remain as scientific issues with important technological
applications. To achieve better control of microstructure formation in materials one must
determine: 1) If pattern-forming “instructions” are somehow encoded on solid-liquid interfaces?
If so, 2) Do these instructions devolve from some deterministic thermodynamic mechanism, or
are they imposed extrinsically by noise and other random disturbances?

2. Grain Boundary Grooves
Grain boundary grooves (GBGs) are naturally occurring crystalline microstructures found along
polycrystalline solid-liquid interfaces. GBGs affect interfacial dynamic behavior by reducing an
interface’s morphological stability through enhanced local heat and solute rejection into the melt.
Their interactions with both stationary and moving solid-liquid interfaces were first reported
experimentally in the late 1960s using hot-stage optical and electron microscopy.
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Figure 1. Sequence of virtual work
steps to equilibrate an isolated GBG
with a small dihedral angle. Top:
Initial state, grain boundary (GB)
intersects a flat solid-liquid interface.
This interface locates the melting
point isotherm, T = Tm. Mid-
panels: Intermediate states, where
the interface curves and lengthens,
while the grain boundary shortens and
the triple junction is drawn downward.
Bottom: Final state, consisting of
undercooled melt within the cusp
depression in a vertical, constant
temperature gradient, G, suggested by
the stack of equally spaced isotherms.

Early studies on dilute alloys demonstrated that persistent defects, including GBGs, initiate
morphological instabilities that stimulate complex patterns on solid-liquid interfaces [3, 4, 5].
Recently, dynamic effects induced by GBGs on solid-liquid interfaces in alloys were probed with
phase-field simulation to follow morphological changes associated with interfacial instability [6].

2.1. Variational GBGs
The equilibrium profile for an isolated GBG, separating phases with equal thermal conductivity,
was solved using variational calculus by Bolling and Tiller [7]. The profile, µ(η; Ψ), for a mirror-
symmetric variational GBG, between phases of equal thermal conductivity, with dihedral angle,
Ψ ∈ [0, π), is described by the following pair of equations, plotted in figure 2 for Ψ = 0,

µ(η; Ψ) = −1
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The leading minus sign in equation (1) denotes a GBG’s right-side profile, 0 ≤ µ ≤ ∞, whereas
the leading plus sign denotes its left-side profile, −∞ ≤ µ ≤ 0. Also, the limited range of negative

η-values allowed for equations (1) is η?(Ψ) ≤ η < 0, where η?(Ψ) = −
√

1
2(1− cos π−Ψ

2 ).

The system’s thermo-capillary length, Λ ≡
√

γs` Ω
G∆Sf

, determines the equilibrated (physical)

size for variational GBGs derived from calculus. The materials constants defining Λ are γs`
[J/m2], the solid-liquid interfacial energy density; Ω [m3/mole] the molar volume of both phases;
and ∆Sf [J/mole·K], the solid-liquid system’s molar entropy change on melting. G, however, is
the system parameter setting the magnitude of the temperature gradient and the GBG’s size.

2.2. Equilibria on curved solid-liquid interfaces
The scaling law implicit in the definition of Λ also defines the appropriate temperature interval
needed to non-dimensionalize the Gibbs-Thomson equilibrium interface temperature into a useful
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steady-state thermo-potential distribution along curved solid-liquid interfaces in the presence of
a constant temperature gradient. The Gibbs-Thomson temperature distribution provides several
important thermodynamic effects, largely ignored to date, that are intimately related to pattern
formation during solidification.

At fixed pressure in the melt, the Gibbs-Thomson temperature distribution connects interface
curvature, κ(y(x)) [m−1], of a solid-liquid interface with its local equilibrium temperature, or
chemical potential. For the case of a stationary GBG separating pure solid and liquid with equal
thermal conductivities, held in a uniform temperature gradient, G, the interface temperature,
Tint(y(x)) [K], decreases linearly with depth coordinate, y. Local undercooling within the melt
cusp, viz., (Tint(y(x)) − Tm) [K], increases linearly as G × y [K]. Thus, for equilibrated GBGs,
portrayed in figures 1 and 2, their undercooling [K] and interface curvatures [m−1] remain
proportionate per the well-known Gibbs-Thomson relationship,

Tint(y(x))− Tm = −
(
γs`Ω

∆Sf

)
κ(y(x)). (2)

Melt undercooling [K] can be transformed to a non-dimensional thermo-potential, ϑ, by dividing
equation (2) by a suitable temperature interval. The temperature interval characteristic of a
GBG is 2G×Λ [K] that approximates the maximum undercooling developed at a GBG’s triple
junction. This choice defines a dimensionless thermo-potential, ϑ(y(x)), namely,

ϑ(y(x)) ≡ (Tint(y(x))− Tm)

2GΛ
= −

(
γs`Ω

2GΛ∆Sf

)
κ(y(x)). (3)

A non-dimensional curvature, κ̂, defined consistently with the system’s capillary length, Λ,
is κ̂(η(µ)) ≡ κ(y(x)) × 2Λ. Introducing that curvature into the foregoing Gibbs-Thomson
relation, equation (3), allows a GBG’s thermo-potential to be expressed in non-dimensional
(µ, η) coordinates as,

ϑ(η(µ)) = −
(

γs`Ω

2GΛ∆Sf

)
κ̂(η(µ))×

(
1

2Λ

)
. (4)

Gathering all the material and system constants that appear in equation (4), and inserting

the lumped parameters that define the GBG’s length scale Λ, shows that γs`Ω
GΛ2∆Sf

= 1. Thus,

judicious selections of the length and temperature scales allow the Gibbs-Thomson temperature
for a variational GBG to assume the simple form, ϑ(η(µ)) = −1

4 κ̂(η(µ)). The in-plane curvature
distribution for any variational groove profile, equations (1), can be evaluated using the well

known differential calculus formula [8], κ̂(µ(η)) ≡ d2η/dµ2

(1+(dη/dµ)2)2/3
= −4η, (0 ≥ η ≥ η?(Ψ)).

Note, that under the constrained equilibrium provided by the applied temperature gradient,

Figure 2. Variational GBG profile,
µ(η; Ψ), plotted with equation (1), and
its scaled coordinates µ = x/2Λ, η =
y/2Λ. The interfacial slope and
curvature both vanish as µ → ±∞.
The length scale, Λ, depends inversely
on the magnitude of the gradient, G,
in the +η direction. This gradient
constrains the entire profile to lie
between the µ-axis and the groove’s
triple junction at µ = 0, η = η?(Ψ).
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G, the interface curvature and the thermo-potential both approach zero as η → 0, and
µ → ±∞. Moreover, when the curvature, κ̂ = −4η, is substituted into the thermo-potential,
ϑ(η(µ)) = −1

4 κ̂(η(µ)), one finds that this interface thermo-potential equals the value of the
GBG’s depth coordinate, η,

ϑ(η(µ)) = η(µ), (0 ≥ η ≥ η?(Ψ)). (5)

As shown next, this linear distribution of scalar Gibbs-Thomson thermo-potentials along
the depth coordinate, η, implies much more than merely matching chemical potentials at
thermodynamic equilibrium. They also provide a vector gradient field along the interface.

2.3. Interface gradients and fluxes
A directional gradient field from the Gibbs-Thomson scalar thermo-potential distribution,
equation (5), exists tangentially along the solid-liquid interface. This field may be calculated
from the following vector operational sequence,

~∇τ [ϑ(η(µ))] =
d

dη
[ϑ(η(µ))]

(
dη

dŝ

)
~τ , η(µ) ∈ R2 (6)

where ŝ is the GBG’s dimensionless arc length of its profile, scaled similarly by twice the thermo-
capillary length, 2Λ. The Frenet frame vector in equation (6), ~τ , is the unit tangent along the
interface. The arc-length derivatives, dη/dŝ, on the left and right profiles are, respectively,

dη/dŝ = ±1/

√
1 + (dµ/dη)2 = ∓2η

√
1− η2, (η < 0). (7)

When equations (5) and (7) are substituted into the chain rule, equation (6), one obtains the
explicit expressions for the vector arc-length gradients of the Gibbs-Thomson thermo-potential
along the right and left GBG profiles, respectively,

~∇τ [ϑ(µ(η); Ψ)] = ±2η
√

1− η2 · ~τ , (0 ≥ η ≥ η?(Ψ)), (8)

The presence of vector gradients in the thermo-potential requires an irreversible interfacial
response according to Fourier’s law of heat conduction in 2-D. Specifically, an energy flux [W/m]
is spontaneously stimulated along the solid-liquid interface in directions opposite to those of
the interface’s local thermo-potential gradient vectors, equations (8). Application of Fourier’s
law introduces an interfacial thermal conductivity, kint [W/K]—the value for which is the bulk
thermal conductivity [W/m-K] of the solid and liquid phases multiplied by a thickness [m], of
the order of the effective width of the solid-liquid interface. This interfacial transport number
is well defined and has been analyzed theoretically [9]. Unfortunately, estimates for its values
have received little attention from experimental heat transfer research for solid-liquid systems.
Nevertheless, the dimensional forms of these tangentially stimulated Gibbs-Thomson energy
fluxes on the right and left GBG profiles may be expressed as,

~φτ (y(x); Ψ) = ∓
(

2Gkint
Λ

)
y

√
1− y2

4Λ2
· ~τ (y < 0) [W/m]. (9)

The non-dimensional form of this capillary-mediated heat flux, Φ̂(η(µ); Ψ), is found by dividing
equations (9) by the lumped constant Gkint [W/m], to yield expressions identical to equations
(8) for the tangential gradients, but of opposite sign.

Φ̂(η(µ); Ψ) = ∓2η
√

1− η2 · ~τ . (10)



ICASP5-CSSCR5

IOP Conf. Series: Materials Science and Engineering 529 (2019) 012027

IOP Publishing

doi:10.1088/1757-899X/529/1/012027

5

2.4. Capillary bias fields
The presence of tangential interface fluxes, equations (10), has several interesting inferences.
First, as tangential energy fluxes, these capillary-mediated energy streams, caused by gradients
in the distribution of the Gibbs-Thomson thermo-potentials along the solid-liquid interface, are
not directly interactive with the interface. The reason for their indirect interaction is that
the energy balance controlling interface speed responds only to fluxes directed normal to the
interface, not tangentially. Second, the quasi-static thermal fields, T (µ, η)i, i=s, `, within the
bulk phases forming a GBG, which are established by the applied temperature gradient, G,
each obey Laplace’s equation. Laplace temperature distributions within the bulk phases are
“harmonic” fields, which preclude divergence of their heat fluxes. This harmonic restriction,
however, does not apply to the capillary-mediated fluxes moving along the interface itself, i.e.,
heat flowing between the phases! This peculiar and, to date, unnoticed distinction is of critical
importance to understanding how perturbing energy fields arise from capillarity and modify
the local speed of solid-liquid interfaces. Tangential fluxes obey Poisson’s equation, and are
divergent, i.e., they result in small releases or removals of energy along the interface, which act
as Poisson sources. This qualitative difference among the system’s interacting thermal fields
accounts for capillary-induced contributions to the local energy budget of curved solid-liquid
interfaces, both moving and stationary.

Specifically, capillary-mediated thermo-potential gradients along interfaces obey the following
Poisson equation [10],

∇2
τϑ(µ(η); Ψ) = B(η(µ)), (11)

where B(η(µ)), the bias field, acts as the interfacial source/sink function.
Equation (11) shows that bias fields, mathematically, are also the surface Laplacian of the

Gibbs-Thomson potential, or equivalently, they equal (minus) the arc-length divergence of the

capillary-mediated tangential vector flux, −~∇τ · [Φ̂(η(µ); Ψ)]. The key issue to be resolved in this
paper is to demonstrate how interfaces, such as stationary GBGs, also support ‘active’ Poisson
sources or sinks that provide intrinsic interface perturbations. Stationary microstructures, open
to energy exchange, also interact with their own Poisson bias fields and provide an unique
opportunity to generate a persistent perturbations once the microstructure and its source field
are equilibrated. This occurs for GBGs without suffering the additional complications of complex
pattern generation or other significant microstructure changes associated with morphologically
unstable moving solid-liquid interfaces.

The Poisson source, or bias field, for a grain boundary groove may be calculated analytically
from its Gibbs-Thomson potential distribution by twice arc-length differentiating equation (5).
This is accomplished applying the following nested set of elementary operations in R2,

∇2
τϑ(η(µ)) =

d

dη

[
d

dη
[ϑ(η(µ); Ψ)]

(
dη

dŝ

)
~τ

]
·
(
dη

dŝ

)
~τ . (12)

The operational sequence shown in equation (12) defines the surface Laplacian of the Gibbs-
Thomson equilibrium thermo-potential specified in equation (5). The bias field, B(η(µ)), which
in 2-D is d2ϑ/dŝ2, describes the dimensionless distribution of rates at which divergent capillary-
mediated fluxes steadily remove thermal energy along a GBG’s solid-liquid interface. The result
for any GBG is the (negative) cubic distribution of energy rates,

B(η(µ); Ψ) = 16η(1− 2η2), (0 ≥ η ≥ η?(Ψ)). (13)

Equation (13), provides a close approximation to the actual Poisson perturbation field resident on
a fully equilibrated GBG. This occurs, somewhat fortuitously, because the shape modifications
of a stationary GBG induced by capillary perturbation fields are extremely small, so variational
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GBG profiles accurately portray the actual curvature distributions along an equilibrated grain
boundary groove supporting a basis field.

Equation (13), plotted as smooth curves in figure 3, shows that the bias field along any
stationary GBG is everywhere negative and steady state. Negative bias fields cause cooling,
i.e., energy removal, and correspond to positive vector divergences of the tangential capillary-
mediated flux. Thus, the tangential heat flux, by virtue of its (positive) divergence, steadily
removes energy from a GBG’s solid-liquid interface everywhere, especially deep within the cusp.
This self-induced energy removal cools the interface slightly, causing its curvature to increase
(responding to the Gibbs-Thomson effect), and spontaneously “biases” the interface toward local
equilibrium, as predicted by the Le Châteliér-Braun effect.

Bias fields on moving solid-liquid interfaces can behave in more complex ways, and may heat
and cool different interfacial regions. Added or diminished energy rates both affect a moving
interface’s local energy budget. The interface speed responds immediately to conserve energy
at all points by slowing or accelerating latent heat production, respectively. In this sense, the
capillary field biases or modulates the motion of a moving interface, and can stimulate complex
microstructure pattern development if the interface is morphologically unstable.

3. Phase-field Simulations and Results

We formulated an entropy density functional, S(e,φ)=
∫
V (s(e,φ)−(εa(φ,∇φ)+

1

ε
w(φ)))dV , for

phase-field computations of thermal grain boundary grooving, a model that ensures consistency
with classical irreversible thermodynamics. The bulk entropy density, s, depends on the internal
energy density, e, and phase indicator, φ = (φα)Nα=1, the latter being a vector of phase-field
variables that lies in the N − 1 dimensional plane. Two grains and their melt (N = 3) are the
phases needed to model a GBG microstructure. a (φ,∇φ) and w (φ) represent the gradient and
obstacle potential type energy density, respectively; ε is a small length-scale parameter related
to the thickness of the diffuse interfaces; and V represents the domain volume. Details of this
simulation method are available in [11, 12]. Interface residual measurements to detect bias fields
are fully disclosed in [13, 14].

Phase-field simulations, as very briefly described here, were used to probe stationary
GBGs, which, upon equilibration in an applied linear temperature gradient, spontaneously
develop interfacial Poisson sources (capillary-mediated perturbation fields). The opportunity
to equilibrate a stationary microstructure, and then ‘uncover’ and measure its resident bias-
field, presents a novel extension of phase-field simulation. Importantly. it permits independent
verification of the existence of steady-state interfacial bias-fields.

Precision interface potential measurements conducted in our study reached levels of detection
well below that which could possibly be accomplished experimentally, which allowed successful
extraction of small “residuals” caused by non-linear interactions between the interface and its
capillary-mediated fields. Residuals were the differences of the measure isoline potentials and
the linear potentials imposed by the applied constant temperature gradient, G.

In order to obtain residuals data from simulations, GBG microstructures must achieve
equilibrated stationary configurations in an applied temperature gradient, so that their input
shapes become slightly modified by interaction with their self-generated capillary bias fields.

4. Conclusions
(i) Steady-state distributions of interfacial GBG thermo-potentials are the sum of the applied

gradient, in which the GBGs are equilibrated, plus small non-linear contributions that arise
from autogenous interfacial energy sources. The key issue divulged in this study that led
to independent verification of these higher-order thermodynamic fields was spontaneous
energy absorption from GBG interfaces. The energy removal occurred because tangential
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Figure 3. Comparison of phase-field
residuals (data) from simulated GBGs
equilibrated at steady-state with predicted
B-fields (curves) obtained from sharp-
interface theory. Residuals data measured
on simulated diffuse interfaces agree well
with theoretical estimates based on sharp
interface thermodynamics. These results
show that capillary-mediated bias fields are
present at equilibrium on equilibrated GBG
interfaces.

gradients and heat fluxes of the Gibbs-Thomson thermo-potential are divergent vector fields.
Positive divergence of this capillary-mediated tangential energy flux causes energy loss at the
solid-liquid interface, i.e., cooling, which results in small decreases of the Gibbs-Thomson
thermo-potential, and consequent small increases in the interface curvature required by the
system’s shift toward local equilibrium.

(ii) The distribution of residuals is the result of—and, as explained in [13, 14], proportionate
to—the capillary source distribution affecting the local thermal balance. Residuals are
plotted as the data points in figure 3, all of which closely mimic the distributions of
cooling perturbations, B-fields, plotted as smooth curves predicted from sharp-interface
thermodynamics and field theory for variational GBGs.

(iii) When simulated, GBG profiles achieve thermal equilibration, and we observed no significant
changes from their analytical shapes. We detected only “cooler” interfaces, i.e., by detecting
negative residuals of the potential, caused by energy removal through the GBG’s (negative)
capillary bias field, equation (13). Again, the quantitative agreement demonstrated in
figure 3 between residuals, i.e., non-linear potential depressions, and their calculated causal
cooling rates, B(µ(η)), reflects the predicted proportionality expected between interfacial
cooling rates and measured decreases in thermo-potential.

(iv) These data provide indirect, but firm, support for our previous claim that it is
capillary-mediated interfacial energy fields, previously unrecognized as required for
omnimetric interfacial energy balances, that are causal for microstructure formation during
solidification. Future microstructure control strategies during casting should recognize their
presence for further improvement and control of microstructure patterns.
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