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Abstract. As an illustration of the design features of composite winding pressure gas tanks, the 

article provides three illustrative simple examples: 

1. calculation of the critical pressure in composite cylinders according to the layer-by-layer 

analysis scheme for pairs of symmetrically wound layers; 

2. assessment of the permissible wall thickness by a rational design based on the “thread 

analogy”; 

3. analysis of the effectiveness of multi-cavity spherical gas tank, which are located in each 

other - box in a box model ("nested doll"). 

1. Calculation of bearing capacity by criteria for pairs of layers 
The cylindrical part of the gas tank is wind with a unidirectional tape with a symmetrical alternation of 

orientation angles, so that the reinforcement system can be broken down into orthotropic pairs of 

layers (±α). If the stacking symmetry were not observed, under internal pressure, not only the axial 

and circumferential stresses would arise, but also shear ones, leading to a curvature of the cylinder 

axis, to its twisting, which is clearly undesirable. 

We illustrate the use of a layer-by-layer method [1, 3] for pairs of layers using the example of a 

cylindrical section of thin-walled tank. Axial σz = pR/(2h) and circumferential σθ = pR/h stresses are 

created by the internal pressure p. Where R, h are the average cylinder radius and wall thickness. If we 

denote Eij – four constants of elasticity modules matrix of a monolayer, then for each pair of layers the 

Young’s modulus in the axial direction is expressed in the following form: 
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(1) 

The Young’s modulus Eθ(α) is expressed by the Eq. (1) with cosα replaced by sinα. Under Voigt’s 

assumption of equal deformation of all layers and the composite as a whole, the effective elasticity 

modules of the composite are found by averaging over all pairs of layers. Knowing the elastic modules 

and average stresses, we can determine the average circumferential and axial strains, multiplying 

which by the corresponding elastic modules (1), we find the circumferential and axial stresses for each 

pair of layers. Further, for each pair of layers under the conditions of the known biaxial stress state we 

apply the “tilting rhombus type” strength criteria [1, 2, 3] (Figure. 1): 
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(2) 

where σz
*(45) and σθ

*(45) - axial and circumferential strengths of the composite tube wound with one 

pair of layers at angles ±45O. 

 

Figure 1. The cylinder scheme and the rhombus model of inextensible 

threads. 

 

The fiber rupture condition (straight line 3 in Fig. 2) takes the form: 
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(3) 

where in rupture moment σ0=σz
*(0) – critical tensile stress along the fibers. 

The highest strength according to (2) corresponds to the optimal winding angle α* (or the optimum 

ratio of applied stresses tgβ=σθ/σz) [4, 5, 6]: 
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Figure 2. Limiting surfaces in the stress space for a tube with winding (±α) 

under biaxial tension: 1, 2 – the conditions for tilting rhombus type (2), 3 – 

fiber rupture condition (3), 5 – limiting ellipse (5). 

 

The use of piecewise linear approximation (2) - (3) in computer calculations is more difficult than 

using a single expression for the strength criterion. In the biaxial tension of the tubes under stresses σz 

and σθ, the experimental data in the σz–σθ coordinates are well described by the ellipse section (5 in 

Fig. 2). The ellipse passing through points on the axes (σz(α) and σθ(α)) corresponding to the strengths 

under uniaxial loading, and through a point on the optimal loading line (4) from the origin to the 

length associated with the strength (3) along the fibers σz
∗(0): 
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(5) 

where σz
∗(0), σz

∗(45) are the tensile strengths of tubes with windings (0) and (±45O); t=tgα. 

2. Rational design of the cylinder is a thread analogy 

A simpler scheme for calculating the winding gas tanks is to use three assumptions, the so-called 

‘thread analogy’ [5]: 

1. The fibers work only on tension condition and carry the entire load, and the matrix is not loaded 

at all. 

2. All fibers are equally stressed. 

3. The structural failure occurs as a result of the limit stress σ0 =σz
∗(0) reaching in all fibers (at the 

same time, according to the second assumption). 

Assumption 2 is very ‘strong’, it restricts the considered winding systems only to the class of 

equally stressed fibers: there are no superfluous fibers, all fibers work “at the end of tether”. Such 

constructions in reality do not exist, and should not exist. The failure of them is like an explosion – all 

fibers are break simultaneously, but this model can be used for engineering estimates. Using the 

example of the ‘thread analogy’ it is easy to explain the concept of ‘rational design’. 

The often used term ‘optimal design’ – in the broadest sense of the word means the creation of the 

best structure. In a narrower sense, the optimal design is traditionally called the process of finding in 

the design space bounded by force, kinematic, criterial, technological and other conditions, a 

multidimensional vector of design parameters that implements a minimum of some goal function (for 

example, weight, cost or some convolution of these or other criteria). Usually, optimization problems 

are solved by methods of non-linear programming with the use of ‘penalty’ functions. 

Designing is called rational when certain parameter relationships are predetermined, for example, 

the equal strength and equal stress in all fibers. This greatly simplifies the search for an optimum. In 

fact, this finding of a conditional optimum is not the “top of the mountain”, but the highest point on a 

certain section “of the mountain”. In the simple case of equally stressed fibers, we get a certain 

maximum optimum: no fiber can be added – it will be underloaded and no fiber can be eliminated: the 

stresses in the remaining fibers will exceed the ultimate strength. 

As an example, consider the scheme of reinforcement of the cylindrical part of a gas tank by two 

families of fibers: 1 – with orientation ±α1 and with layer thickness h1 and 2 – with orientation ±α2, 

with thickness h2. The total wall thickness h=h1+h2. The average axial and circumferential stresses 
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(6) 

in a critical state can be expressed through the limiting stress along the fibers σ0, summing up the 

forces created in the two families of layers, 
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where  A0 = pR/σ0. 

Two equations (7) contain four design parameters, two of which can be found after setting the other 

two arbitrarily (?). The question-mark (?) means that we want to make sure that we can really specify 

any values of the angles. Suppose that h2=0. There remain two parameters that are found from (7): 
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Choosing angles α1, α2 equal to (±30/90), (±45/90), (0/±60), we will see that the total thickness of 

the wall remains the same, 3A0/2. The same will remain for the algebraic sum of the thicknesses and 
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for a combination of angles (±60/90), (0/±45) or (0/±30), only one of the thicknesses will be negative, 

which means that it is impossible to provide equilibria in two stresses if two families of fibers have an 

orientation angle both smaller or both larger than α*. In fact, not the thickness is negative, and the 

stresses in these, ‘unsuccessfully’ selected families, should become compressive to ensure the stress 

uniformity of the fibers (7). 

This example shows that any rational project of equally stressed families of fibers provides the 

same weight of the structure under given loading conditions; choosing the best remains for 

technological or constructive reasons. 

3. Multi-cavity spherical gas tank 

Multi-cavity gas tanks (of the type “nested doll”) - (Fig. 3) are of interest to reduce the overall 

dimensions, since for a given external radius of the increasing number of the inner tanks to increase 

their allowable pressure, and hence can increase the total mass of injected gas. 

 

Figure 3. Multi-cavity gas tank in section. 

 

As a model, consider n equidistant spherical gas tank put one into another (box in a box model or 

"russian nested doll") with a constant wall thickness h. The outer cylinder with the number n has a 

radius R, the inner, the smallest with the number 1 – R/n accordingly, the i-th cylinder has a radius 

iR/n. 

1) The total mass of the gas tank, which naturally increases with the number of tanks: 
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(8) 

where  B=4πρhR2 is the mass of the outer (largest) sphere;  

ρ - the density of the tank material. 

2) The volume of the cavities between the spheres: 
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(9) 

where  A=4πR3/3 - is the volume of the external spherical gas tank. 

3) Calculate the allowable pressure in each cavity. This is analytically - the most complex, iterative 

procedure, not solvable in algebraic form, since there is no general formula for partial sums of a 

harmonic series. The permissible stress [σ] for each cavity is expressed in terms of the external pi+1 and 

internal pi pressure, which, for convenience, we refer to 0.1 MPa = 1 atm to estimate how many times 

the volume of accumulated gas exceeds the volume of the cavity νi: 
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(10) 

where С=2hσ*/R the permissible gas pressure (in atm.) in the outer (largest) spherical gas tank. 

4) Calculate from (9), (10) the total volume of gas in all cavities in terms of the normal pressure of 

1 atm. The volume of accumulated gas increases with the number of cavities with the former external 

dimensions, i.e. with the same radius of the external sphere: 
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(11) 

5) We find from (8), (11) the efficiency factor K, as the ratio of the largest possible volume of gas 

in a multi-cavity tank to the mass of the walls: 
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As can be seen from equality (12), obtained on the basis of numerical calculations, the efficiency 

factor K (in the 1st approximation, without taking into account the effect of wall thickness on cavity 

volumes) does not depend on the gas tank radius, nor on the wall thickness, nor on the number of 

embedded tanks. This is, in fact, a property of the gas tank material: metal, composite. You can 

compare, for example, the effectiveness of steel and aluminum cylinders. The result is not obvious and 

ambiguous. It is necessary to check the validity of formula (12) by direct arithmetic calculations for n 

= 1, 2, 3, 4, 5, etc. 

Table 1. The results of calculations by formulas (8) - (12) for small number of cavities. 
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To obtain an analytical expression for the partial sums of the harmonic series, no one else (since the 

time of Euler) has succeeded. 

Two words about the features of the harmonic series. The name “harmonic” itself is connected with 

the fact that when the length of a string (violin) decreases by a factor of i, its tone corresponds to the i–

th harmonic with respect to the total length of the string. Euler proposed the following approximation: 

1

1
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where γ=0.5772 - Euler-Macheroni constant. 

Table 2. Partial sums of the harmonic series 

n 1 2 3 4 5 6 7 8   

nS  1 3/2 11/6 25/12 137/60 49/20 263/140 761/280   

Another surprising property of the harmonic series (apart from the absence of an analytical 

expression for partial sums) is that these sums grow very slowly. Despite the fact that the series 

diverges, that is, its partial sum tends to infinity, in order to achieve, for example, a value of 100, it is 

necessary to sum up an insanely large number of members of the order of 1043. The computer with a 

speed of a billion operations per second will calculate over millions of years such a number members. 

But this fact, apart from curiosity, has nothing to do with the task at hand: it’s just that - a surprising 

number. 

4. Conclusion 
1. Using the cylindrical part of the gas tank as an example, the easiest way to illustrate the possibility 

of optimizing the structure is by choosing the winding angles. 

2. Any rational project of equally stressed families of fibers provides the same mass of structure under 

given loading conditions; choose the best is from technological or design considerations. 

3. In the first approximation, without taking into account the wall thickness, the ratio of the largest 

amount of gas stored in a multi-cavity gas tank to the mass of its walls does not depend on the tank 

radius, nor on the wall thickness, nor on the number of built-in tanks. 
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