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Abstract. Most of the Preventive maintenance (PM) reliability modeling research has 

focused on the relationship between two adjacent failure intensity functions, while few real 

case studies have demonstrated the application of these PM models. Thinking from this vision, 

a nonlinear PM model with scale and shape adjustment parameters is proposed based on a 

Weibull distribution, and two adjustment parameters can describe each PM effect. Meanwhile, 

the proposed model can separate the influence of an environmental factor from the failure 

intensity function of the new system when it operates under a new condition. The 

environmental parts in the failure intensity function can be improved or removed after several 

PM actions. Finally, one real case study is exhibited to illustrate the proposed model. The 

results indicate that the proposed model exhibits good fitting performance in reliability 

modeling and can describe the PM effect quantitatively as well as reveal the influence of the 

environmental factor on the system reliability. 

Keywords：Nonlinear preventive maintenance model; Weibull distribution; shape adjustment 

parameter; maintenance effect; environmental factor. 

1.Introduction 

1.1 Motivation 

Preventive maintenance (PM) research, which can increase equipment lifetime and decrease the 

frequency of in-service breakdowns, has attracted extensive attention since its introduction. 

According to the maintenance effect, PM can be generally classified into four categories as follows: 

better-than-perfect PM, perfect PM, imperfect PM and worse PM[1]. A better-than-perfect PM brings 

a system’s operating condition to a state with a smaller failure rate or/and a slower failure process 

than a brand new identical system. This state can be due to technological advances, more reliable 

production or performance adjustment in a new environment via maintenance. A perfect PM action 

restores the system to an “as good as new” condition. Upon perfect maintenance, the failure intensity 

function of the item is the same as a new one. A worse PM action can increase the failure rate of the 

item. This type of maintenance might be due to various reasons such as using an inferior lubricant. 

An imperfect PM action does not lead the system to the “as good as new” or “as bad as old” 

condition, while it can bring a system to any condition between “as good as new” and “as bad as old” 

condition[2, 3]. Meanwhile, the environmental influence is a main factor for a new system when it is 

used in a new condition. This influence may result in some failures when a system operates in its 

several initial periods, while it can be improved or removed after an operating in the first several PM 
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intervals. Wu and Zuo[2] reviewed the PM policy and pointed out that the existing PM models 

present weaknesses. 

Weibull model has a wide application and some good performances in reliability modeling. As a 

straightforward analysis approach, Weibull probability plot (WPP) can observe the change in the 

parameter of Weibull distribution. On the WPP, the monotonicity of the failure intensity function in 

each PM interval is the same value in the existing PM models, while the real case indicated that it 

may be different in different PM cycle[4]. Additionally, the environmental factor may play a leading 

role during the initial operating period when a new system operates in a new condition. These factors 

can be removed or improved by one or several times the PM after a period of time operating in a new 

condition, and yet the reliability model cannot be developed using the initial operating data for a new 

system in a new condition. Otherwise, the system reliability may be misleading. The current PM 

model was unable to meet these cases, and a few case studies in the literature have demonstrated the 

use of existing PM models. Based on this consideration, a nonlinear PM model is presented based on 

Weibull distribution. 

1.2 Literature review 

As can been seen, the failure intensity function is typically used to describe quantificationally some 

of these PM effects, as many maintenance actions may not realistically result in a perfect or minimal 

situation but in an intermediate one[5, 6]. Most research has focused on imperfect PM, whereas there 

have been few records aimed at better-than-perfect PM. Seo and Bai[7] introduced a periodic PM 

model. In this paper, the failure intensity function is hk(vk-1(t))=hk-1(wk-1(xk-2(t),T)), where vk-1(.) and 

wk-1(.) are specified functions, and T is PM interval length. Wu and Derek[8] assumed that the quality 

of a PM action is a random variable following a probability distribution, and the failure intensity 

function is hk(t)=ak-1h(t) after the kth PM, where a is the random value of a≥1. Kijima et al. [9, 10] 

introduced two types of virtual age PM models, and assumed that PM serves only to remove damage 

created during the last sojourn, and the virtual age at the start of working after PM is vk=tk-1+ξk(tk-tk-1) 

and vk=ξk(vk-1+ tk-tk-1), where 0<ξk<1. Lam[11], Zhang and Wang[12] et al., have presented the 

geometric process maintenance. The failure intensity function is hk(t)=αhk-1(αt) after maintenance. 

Zequeira and Be ŕenguer[13] described a system with the following two types of failure mode: 

maintenance and non-maintenance. A failure intensity function defined as hk(t)=λ(t)+r(t-(k-

1)T)+pk(t)λ(t) is introduced, where λ(t) is the failure rate of the non-maintenance failure modes, r(t) is 

the failure rate of the maintenance failure modes and pk(t) is a function to model the dependence 

between the maintenance and non-maintenance failure models. Castro[14] also considered a system 

subject to two modes of failure: maintainable and non-maintainable, while the failure intensity 

function with definition hk(t)= αN(kT)h0(t-kT) is related to each failure mode, where α>1. Clavareau 

and Labeau[15] presented a bi-Weibull expression h(t)=h0(t)+a(bt-c)d to describe the system failure 

rate, which allows both the useful period and the ageing zone of a system to be covered with no 

consideration of infancy problems.  Peng et al. [16] proposed a hybrid imperfect maintenance model 

with random adjustment-reduction parameters and claimed that this model is more realistic in real 

cases. 

The influence of the environment on system reliability is a key factor, while it has been neglected in 

conventional PM. In practice, the influence of environment may be removed, weakened or improved 

by several PM actions until it can be ignored in the rest PM intervals. This situation can result in the 

monotonicity of the system failure intensity function displays different in the remaining PM interval. 

Wu and Scarf[17] regarded that the failure process of a system may be influenced by operational and 

environmental stress factors, and described the system failure intensity function with λo(t)=λb(t)ϕ(t), 

where is the baseline failure intensity function and is a function of covariates that quantify such 

extrinsic factors. Xia et al,[18] introduced the effect of an environmental condition by using an 

environmental factor ak, where the failure intensity function between the kth and (k+1)th PM is 

hk+1(t)=akbkhk(t+ckT). Tao et al,[19] improved Xia’s failure intensity model and applied an increase in 

the hazard rate to describe the environmental factor, and then the model was used to model the 

reliability of a drilling machine. Xia et al,[20] applied an environment factor to reflect the external 
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environment effect on the machine reliability, and the developed model was used in the predictive 

maintenance of a manufacturing system. Lhorente et al.[4] provided a case study on wheel motor 

armatures of a fleet of Komatsu haul trucks in a mining application in Chile. Three successive PM 

reliability models obtained from real failure data showed that current PM models are unable to 

represent the real case because the failure intensity function of the 1st PM interval is decreased 

whereas it increased in the other two PM intervals. Wu and Zuo[2] suggested that PM models maybe 

consider more complex situations between hk(t) and hk-1(t). 

1.3 Paper outline and definitions 

The remaining parts of this paper are arranged as follows: a description of the nonlinear PM model is 

introduced in section 1, the parameter estimation is presented in section 2, a real case study is 

examined in section 3, model discussions are offered in section 4, and then a brief summary is given 

in the last section. Prior to providing a detailed description regarding maintenance policy, some 

terminologies and definitions used in the forthcoming sections are introduced as follows. 

Definitions: 

The kth PM restores the system to an "as good as new (AGAN)" state if hk(t)=h(t). 

The kth PM restores the system to an "as bad as old (ABAO)" state if hk(t)=hk-1(tk-1+t). 

The kth PM restores the system to a "better-than-new (BTN)" state if hk(t)<h(t) almost everywhere. 

The kth PM restores the system to a "better-than-old (BTO)" state if hk(t)<hk-1(t) almost everywhere. 

2. Description of the nonlinear PM model 

Herein, a general PM policy is considered. Without losing the generality, assume that a PM may be 

among the BTN, perfect and imperfect states. A minimal repair can be removed, which restores the 

system to its operating condition if it failed during each PM interval. PM actions are performed at 

time t1, t2,…, tN-1, which can change the healthy condition of the system, and are described by the 

failure intensity function hk(t) (k=1,2,…,N). A replacement is employed after (N-1) PMs at tN, which 

can restore the system to the state of AGAN. The PM interval between the (k-1)th and the kth PM is 

xk that may be a periodic PM, a sequential PM, or a quasi-periodic PM if xi=T, xi=Ti or xi is a random 

variable valued in (T, T+W), where T, Ti and the length of maintenance window W are constant[21]. 

On demonstration of the failure intensity function, the following three points are considered. 

a) A non-negligible fact that a failure may be caused in a new system when it operates in a new 

environment and the environmental factor in the system reliability may be adjusted by some 

maintenance. This phenomenon, displayed in the failure intensity function, is a competing risk model 

that includes the influence of both the environmental and the baseline parts. The environmental part 

can be improved or removed by the early several PM intervals, and the baseline part is related to the 

PM effect. 

 b) Another fact is that some systems may experience a periodic PM policy, which may result in 

a failure intensity function that expresses only a decreasing part in the first several PM intervals. 

Users may be misled because they only can see the decreasing part of the failure intensity function, 

and are unable to find the increasing part. Specially, the influence of the environmental part may be 

weakened by several PM intervals and may be ignored in the remaining PM intervals. Thus, the 

monotonicity of the system failure intensity function displays differently in the remaining PM 

interval. 

c) The PM effect not only exhibits a change in the scale parameters but also a change in the 

shape parameters of Weibull distribution in different PM intervals. 

Based on the above consideration, the following assumptions are used to develop the proposed 

model. 

1) The lifetime distribution of the system follows Weibull distribution, where the baseline failure 

intensity function hB(t) is a two-parameter Weibull distribution. The environmental influence on the 

system reliability decreases with the system operating time, and can be described by a decreasing 

function hQ(t) that is a two-parameter Weibull model in the failure intensity function. Thus, the failure 

intensity function for the new system is h(t). 
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where η and θ denote the scale parameters and β(β>1) and α(α<1) denote the shape parameter in a 

new system. 

2) The failure intensity function of the system after the kth PM is hk(t), which meets the following 

relationship, 

( ) ( ) ( )k kB D

k k B k Qh t A h t C h t= +        (2) 

where Ak=a1a2…ak, Bk=b1b2…bk, and t≥0 is working time after the kth PM. The parameters ak, ck are 

the scale adjustment parameters after the kth PM, and ak, ck >0. The parameters bk, dk are the shape 

adjustment parameters after the kth PM, and bk, dk >0. The environmental part can be improved, 

removed or even ignored when the system experiences k PMs, and the failure intensity function can be 

stated as follows, 

( ) ( )k mB

k m k m Bh t A h t +

+ +=             (3) 

3) All failures can be instantly detected and repaired. Each PM can bring the system to any state 

among the better-than-perfect, perfect or imperfect states. The system is restored to AGAN at 

replacement. The times for minimal repairs, PMs and replacements are negligible. 

4) The mean cost of minor repair Cf is unrelated to the occurred failures and the total severed times of 

the system. The cost of PM Cp is not relevant to the total operational time of the system. The cost of a 

replacement is a constant Cr (Cr>Cm). 

According to the above description of the maintenance process and model assumptions, an 

optimization model of the proposed imperfect sequential PM policy is presented. The system long-

running cost rate is stated as below, 
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The optimal value ({TN
*}, N*) that can minimize the function g({TN};N) is given in Eq. (4). A unique 

optimal sequential PM policy with {TN
*} and N* may be found under a consideration of Ak and Bk 

[21]. 

3. Parameter estimation 

For a lifetime cycle, the models include a new system and preventively maintained system. Similarly, 

parameter estimations also involve α, θ, η, β, ak, bk, ck and dk, and then parameters Ak, Bk, Ck and Dk 

can be obtained according to definition of ak, bk, ck and dk. For failure data, complete data and censor 

data may exist in a PM interval, and thus, these two types of failure data are considered in the 

following reliability modeling. 

Here, Let ti and τi denote the failure time and the censored time for the observed individual i, i = 1, …, 

n+m. For complete data, m=0. If ti and τi are independent random variables, then the log-likelihood 

function 
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If only the failed items are included, then the log-likelihood function lnL(t|X) can be described as, 
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Setting the first partial derivatives of lnL(t|X) with respect to each parameter to zero. By solving the 

systems of the nonlinear likelihood equation, and then we can obtain the maximum likelihood 

estimates for the complete and censored data. 

4. Real Case Study 

A study in reference[4] explored wheel motor armatures of a fleet of Komatsu haul trucks in a 

mining application in Chile. In this real case, four years of maintenance data of these components 

were analysed. The failure data was separated into three groups according to PM frequencies: new 

armatures (before the first PM), after the first but before the second PM, and after the second PM. In 

the paper, two-parameter Weibull models are obtained for each PM cycle. The shape and scale 

parameters are: β1-3 (0.809, 1.247 and 1.235), η1-3 (36286, 6382 and 5264).  

It can be found that the authors were unable to study the relationship among the three models, and the 

shape parameters from β1 to β3 increased with the PM frequencies. During the first operating interval, 

the system is new with β1<1, which means that the system exhibited a decreasing failure intensity 

with operating time before the first PM is performed. This was not always the case and maybe caused 

by environmental or production quality, and the first PM was performed so early that the whole trend 

of the failure intensive function was unable to show completely. Obviously, the whole failure 

intensity function should be a “bathtub” type. This case is suitable to illustrate the proposed nonlinear 

PM model. 

To develop the quantitative relation between adjacent PM cycles, two data sets are created from the 

presented reliability model of the investigation[4] because the failure data was not exhibited in the 

paper. One data set is a complete data with the 200 group data, and the other is a censor data also 

with the 200 group data. Consequently, the modeling process and maintenance optimization are 

given as follows. 

4.1Reliability Modeling 

Step 1. Create {Ri(tj)} 

Twenty groups of random data are created within [0.8,1] and are viewed as reliability data sets for 

the new system using the new system parameters. For the complete data, each data set has 50 failure 

data, and it has failure data and non-failure data with the total number of 50 for the censor data. 

Similarly, 200 groups of random data are created within [0,1] and are viewed as reliability data sets 

for the second and third PM interval. Each group has 100 failure data, which are then marked as 

{Ri(tj)}, where i=1,2,3 denotes the PM interval and j=1,2,…50 or 100. 

Step 2. Obtain the failure data {ti} 

Failure data sets {ti} are attained according to the created {Ri(tj)} and the two-parameter Weibull 

distribution function of each PM cycle. 

 Step 3. Estimate the parameters 

Using the parameters estimation methods to obtain each parameter, and then compute their mean 

values as the system parameters. The parameters for complete data and censored data are obtained as 

bellows. 

For the new system, α=0.7837, θ=40629,  β=1.9742, η=59695. After the 1st PM, a1=30497 and 

b1=0.2535. After the second PM a2=1.3956 and b2=0.9514.The new system is a four-parameter 

Weibull model. After the two PM actions, the failure intensity is changed. It can be found that the 

environmental factors are removed after operating in the first PM interval. The parameters a2 and b2 

can exhibit the second PM effect. β and η can reveal the system reliability in the new system, and θ 

and α display the environmental factors. 

4.2 Maintenance optimization 

In this case, a sequential PM policy is considered and takes Cp=20, Cf=40 and Cr=60, where α<1 and 

β>1, that is h(t) is a “bathtub” type function. According to Theorem 4, there are two solutions. The 

first solution is near zero and is ignored, and the optimal {Ti
*} exists. Then, it can be found that the 
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optimal N*=1 and T1=27414. The results show that the sequential PM or PM policy is unnecessary 

for the system, while the periodic replacement policy is optimal. 

4.3 Comparison with the linear PM model 

Based on the obtained failure data, the differences between the proposed PM model and traditional 

linear PM model are analysed here, which only consider one linear PM model with failure intensity 

function hk(t)=akh(t). For the new system, the reliability function is the same as the above. After the 

1st PM but before the second PM, the function has one unknown parameter a1 that can be attained 

through the MLE method. Similarly, a2 can also be obtained. The failure intensity function curves of 

the proposed nonlinear and linear PM model are shown in Fig.1. 

From the Fig. 1, the proposed PM model has a better fit than the linear PM model. To evaluate the 

goodness-of-fit, the BIC value is usually utilized. Based on the estimated linear PM model and the 

proposed model, the BIC values are obtained. After the 1st PM, the BIC values of the proposed 

model and the linear PM model with the complete data are 1946 and 2290. After the 2nd PM, the 

BIC values are 1908 and 2333. For the censored data, the BIC values are 1946, 1970, and 1908, 1955 

respectively. Obviously, the BIC value of the proposed model is smaller, and thus the proposed PM 

model has a greater goodness-of-fit than the linear PM model. 

  

a) After the 1st PM b)After the 2nd PM 

Fig. 1 R(t) with different models 

4.4 Environmental factors analysis 

The influence of environmental factor on the system failure intensity requires more attention during 

the initial several PM intervals for a new system and can be removed by an operating adjustment or 

maintenance. Together with the system baseline failure intensive factor, the system reliability can be 

seen as a competing risk model. With the growth of the system operating time, the environmental 

factor can be weakened until it is ignored, while the system baseline failure intensive factor may be 

heightened. Herein, we illustrate this point using the proposed model. 

 
a)Failure intensive function for 3 PM intervals 

 
b)Failure intensive function for the new system 

Fig. 2 Failure intensive function 

In the subplot of Fig. 2, ak>1 and bk<1. It can be found that the initial value of the environmental 

factor in the failure intensity function in the 2nd PM interval can be ignored because the time for a 

large value is transient and then approach zero. 
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5. Results 

In this paper, a nonlinear PM model AkhB(tBk)+CkhQ(tDk) is proposed based on the Weibull distribution, 

and parameter estimation methods are given. The proposed model not only depicts the effect of some 

PM actions that may restore the system to any condition between AGAN and BTO, but also may 

bring the system to BTN or even to ABAO. Specially, the model can provide a goodness-of-fit for 

the failure data in reality. These properties exist in practice and are mainly described by parameter Ak 

and Bk. Additionally, the proposed model can describe the influence of the environmental factors on 

the system reliability in different PM interval via parameters Ck and Dk. The influence can be 

improved or removed by maintenance actions in the first several PM intervals. The property is 

proved by the real case study. The existence condition of the optimal periodic PM policy exhibited 

that the optimal PM policy does not always exist, which is decided by Ak, Bk, h(t) and the 

maintenance cost of each item. A real case study is given to support the model’s application and 

properties. 
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