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Abstract. This paper presents how to classify the wear state of an end-mill based on force and 

current signals of the linear axes. The data is divided in binary classes based on the maximum 

flank wear. A support vector machine and a random forest are trained on orthogonal cutting 

experiments, but the validation is performed on arbitrary tool paths. To achieve this unique 

level of generality the signals are transformed into the rotation tool coordinate system. The 

features are extracted over five cutter revolutions. Support vector machines outperform random 

forests achieving 99,8% and 97% accuracy in the two classes on the test data and 98% and 61% 

accuracy on the validation data. 

1. Introduction 

Milling is a very flexible and economic production process, in particular suited for processing metals. 

Tool wear is as unavoidable as it is undesirable and influences manufacturing costs, workpiece quality 

and process safety (tool breakage). Nowadays, milling tools are replaced either after a fixed service 

life or based on the experience of the machine operator. Seldom, monitoring systems are used that 

trigger alarms if a fixed threshold is exceeded. This is only applicable for highly repetitive 

manufacturing tasks and the optimal choice of the threshold is a time-consuming task. 

Only recently, data-driven models have turned into a hot topic in engineering with the rise of 

machine learning techniques, which have vastly spread throughout the academic community. They can 

learn abstract thresholds automatically and; thereby, enable for an automatic tool wear monitoring. 

However, most proposed classification models lack of generality.  

This work trains models on data from orthogonal cutting but validates them on data from a complex 

tool path in one plane. To our known extend, this is the first work that dares to apply its model to 

structurally different data. 

Though many works consider acoustic emission (AE) signals to classify tool wear [1–4], 

Kaya et al. [2] found that they only make a small contribution to an accurate classification of tool wear. 

In contrast to that, acceleration signals show a high correlation to all wear classes, whereas force is of 

particular interest to identify sharp tools. Kaya et al [2] use a genetic algorithm to optimize the 

selection of the features, which serve as input to a support vector machine. The selection could be 

made between 18 statistical values in time-domain of eight signals (force, acceleration, both in all 

Cartesian axes; torque, and AE). Analyzing the choice of the global optimization algorithm, they 

derived which signals have a high correlation to tool wear.  

 Nevertheless, the dominating input to models that classify tool wear is force, since its variation 

correlates to the wear of the tool [5]. Most approaches with machine learning techniques rely on force 

http://creativecommons.org/licenses/by/3.0
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signals [3,4,6,7]. However, if the tool life duration is considered as input feature, it dominates the 

approximation [1]. This changes drastically if more than one tool is considered. Considering the tool 

life makes the approach prone to uncertainties in the production of the tool, the process, and the 

workpiece material. 

The recent focus of learning tool wear lay on classification. Few studies approximate a tool wear 

curve by using a SVM for regression (SVR) [1,6]. However, a classification of the tool wear state was 

achieved afterwards via a customized threshold [6]. The current research focuses on support vector 

machines (SVMs) [1–3,8] and decision trees mostly random forest (RF) [3,4,9] as algorithms to 

classify the tool wear state. 

For tool wear classification, popular features (signal describing characteristics) are the maximum, 

the mean, the median, and the standard deviation [2–4] of a signal. The choice of the features is key to 

the performance of every machine learning algorithm. Kaya et al. [2] extract less common features, 

such as the skewness or the kurtosis, and use a genetic algorithm to select the most appropriate 

features. On this background, the approach of Martínez-Arellano et al. [7] is exceptional since it does 

not extract features explicitly but uses deep learning on the raw signals. They transform the time-series 

signal to an image and apply a convolutional neural network (cNN) to classify the tool wear state. The 

approach considers the time-dependency of the force signal, making it unique for every cutting 

operation. This results in a lack of transferability to a new operation. However, the low level of 

generality is the major drawback of all works in this field. All studies in literature perform straight cuts 

for both, training and testing. None of the models was validated on structurally different data. 

The described works present an active field with a strong focus on feasibility. No consolidation has 

yet taken place with regard to a method or certain features. Furthermore, most works lack of generality 

since training and testing data were taken from the same experiments. This work tackles the latter 

deficit and gathering the most promising features and algorithms from literature.  

2. Approach 

This work uses two of the most popular algorithms for classification from the field of machine 

learning [10]:  Support vector machines (SVMs) and random forest (RF), which are basically decision 

graphs. The algorithms are particularly suited for problems with biased numbers of examples, i.e. 

many examples of one class (e.g. “good tool”) and only a few examples for a different class (e.g. “dull 

tool”). 

2.1. Support vector machine 

Originally designed for classification [11,12], SVMs have turned into a powerful tool to approximate 

arbitrary functions with a comparably small number of model parameters. This makes them less prone 

to the problem of “overfitting”, a phenomenon that all supervised learning methods suffer from. It is 

best described by memorizing the training data revealing a lack of generalization. Models with a large 

number of parameters likely learn a training set without error but exhibit poor generalization, which 

makes the SVM of particular interest [11] in contrast to e.g. artificial neural networks (NNs) [13]. 

Today, it is among the most popular algorithms in machine learning because of its robustness and 

generalization. 

SVMs determine the optimal hyperplane  

𝒘 × 𝒙𝑖 + 𝑏 = 0   with   𝒘 ∈ ℝ𝑛, 𝑏 ∈ ℝ (1) 

that separates two groups of n data points 𝒙𝑖 (were × denotes the dot product in the feature space). 

Assuming a set of data points with corresponding labels of 

{(𝒙𝑖, 𝑦𝑖) | 𝑖 = 1, … , 𝑛; 𝒙𝑖 ∈ ℝ𝑛; 𝑦𝑖 ∈ {−1, +1} }, (2) 

an optimal hyperplane has to satisfy the condition 

𝑦𝑖 = sgn( 𝒘 × 𝒙𝑖 + 𝑏 ). (3) 

The optimal hyperplane maximizes the minimum distance (often called “margin”) of all data points 

to the hyperplane. This corresponds to minimizing the Euclidian norm of the normal vector w of the 
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hyperplane. Those points, which lie on the margin – and thereby define the hyperplane – are the 

support vectors. 

Boser et al. [11] point out that though a maximum margin optimization minimizes the probability 

of misclassification, it is prone to “atypical” data near the decision boundary. They argue that those 

data points have a very high influence on the decision boundary (through their high Lagrangian 

multiplier). This is counteracted by introducing so-called “slack variables”; variables that penalizes the 

extend of misclassification (i.e. the distance to the decision boundary) in the optimization function. In 

this way, a certain misclassification is allowed if it contributes to the overall accuracy and; thereby, 

allows for a more generic decision boundary. 

2.2. Random forest 

The RF consists out of multiple decision trees, of which everyone is build on a randomly selected 

subset of the feature space [14]. The RF obtains a decision by following the majority vote of its 

decision trees. 

The algorithm does not use any pruning techniques on the decision trees. [14] argues that by 

pruning back decision trees they lose their accuracy on the training data, which gives little confidence 

of performing good on unseen data. The hope for generalization is bought at the cost of a lower 

accuracy on the training data. Instead, overfitting of a single classifier can be compensated by using 

multiple classifiers. This work builds a RF with 400 binary decision trees. 

2.3. Experimental set-up 

The experiments were conducted on a Mazak i600 VARIAXIS machining center with a Siemens 

SINUMERIK 840D sl controller. The tool was a two-fluted solid carbide end mill (diameter 

D = 10 mm, helix angle β = 45 °) and the material a high-alloyed steel (X5CrNi-18-10). In order to 

provoke tool wear, the process parameters were chosen somewhat more aggressive than suggested by 

the tool manufacturer: cutting speed 𝑣𝑐 = 140 m/min, feed per tooth 𝑓𝑧 = 0.1 mm. This results in a tool 

life travel path of 88 m, which consists mainly from straight cuts (550 times) and two simple impeller 

geometries with ten blades each, Figure 1. The idealized impeller geometry was chosen in order to 

represent a typical freeform surface geometry for milling and to emphasize the industrial applicability 

of this approach. It evaluates the transferability to a 2D cutting process. 

The first impeller was manufactured after 350 cuts with a still sharp tool and the second impeller at 

the end with a dull tool. The tool state was checked at regular intervals on a microscope (Keyence 

VHX 5000). Those measures classify the tool whether it is sharp or dull. In this way the last 50 

straight cuts and the last ten blade cuts were classified as “dull”. 

 

Figure 1. Overview of the two workpiece geometries: straight cuts and impeller. 

The three-phase alternating current and voltage signals were measured at fs = 10,000 Hz with 

external sensors for the linear axes. To calculate the corresponding DC-components, the angular 

position of the motor was observed applying the method of [15]. In addition, the force was measured 

with a piezo-electric dynamometer (Kistler 9255) at fs = 10,000 Hz. Internal signals from the numeric 

controller (NC) of the machine were acquired via the compile cycle “axis data stream” (ADAS). This 
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enables us to record the position, velocity, acceleration, and current information of every axis. The 

compile cycle works at fs = 400 Hz. 

2.4. Preprocessing 

2.4.1. Transformation  To generalize from orthogonal cutting data to arbitrary conditions, the signals 

are transformed to the coordinate systems of the cutting edges, i.e. being split into their tangential, 

radial, and passive components. For this it is necessary to know the feed direction angle α and the 

angle of every cutting edge, Figure 2. Since the positions of the cutting edges do not vary to each other 

– unless a severe failure of the cutting edge occurs – its position angle composes of the rotation angle 

𝜑(𝑡) and the starting position angle 𝛷0,𝑧. 

 

Figure 2. Schematic overview of the geometric values for the transformation from machine to tool 

coordinate system. 

In general, both variables are unknown. While the starting position of the cutting edges must be 

identified through precise and laborious measurements, the angular position of the spindle is a vital 

information for the cascaded controllers of the spindle itself. However, modern machining centers 

work on encrypted BUS systems denying access to this information. Only external encoders with an 

open interface can provide the exact information. A practical approach to overcome both issues is to 

reconstruct the angular position of the cutting edges. We performed a cross correlation every ten cutter 

revolutions, restricting the allowed lag to 360/𝑁𝑧 of a revolution, where 𝑁𝑧 is the number of teeth. This 

ensures to maintain the correct mapping between signal fraction and cutting edge.  

     Since the sampling rate is not a multiple of the rotational speed, the rotation angle 𝜑(𝑡) varies and 

with it the uncut chip thickness h. This ensures that we can generalize from constant width of cut ae to 

other width of cuts via the uncut chip thickness. 

2.4.2. Features  Force is among the most popular signals to use to classify tool wear [1–4,6,7]. 

Furthermore, acceleration shows a high correlation to tool wear [1,2,4,6]. Cho et al. [6] showed that an 

additional electrical information (power) improves the classification accuracy by 20 %. García-

Nieto et al. [1] demonstrate the correlation of the current to the tool wear state. Though they focused 

on the spindle signals, we chose to use the axis current as additional signals of all linear drives. The 

NC provides additionally the signals of the spindle. 

The most common mechanistic force models in cutting technology – such as the exponential 

Kienzle model [16] or the linear Altintas model [17] – rely on the uncut chip thickness h and the uncut 

chip width b. This information is of particular importance to generate a generic classification since it 

scales the cutting force and all dependent signals. The uncut chip thickness h and the uncut chip width 

can be calculated through a simulation of the engagement conditions.  

Table 1 provides the available signals of the experimental set-up. 
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Table 1. Overview of the available signals and calculated additional data. 

External signals 

(𝒇𝒔 =  𝟏𝟎 𝒌𝑯𝒛) 

Force (𝐹𝑡, 𝐹𝑟, 𝐹𝑝), current (𝐼𝑞,𝑡, 𝐼𝑞,𝑟, 𝐼𝑞,𝑝), uncut chip thickness 

h, uncut chip width b 

Internal signals 

(𝒇𝒔 =  𝟒𝟎𝟎 𝑯𝒛)  

Torque (𝑇𝑟, 𝑇𝑡, 𝑇𝑝, 𝑇𝑆), current (𝐼𝑞,𝑡, 𝐼𝑞,𝑟, 𝐼𝑞,𝑝, 𝐼𝑞,𝑆), 

acceleration (𝑎𝑡 , 𝑎𝑟 , 𝑎𝑝), uncut chip thickness h, uncut chip 

thickness b 

The mean, the maximum, and the standard deviation were extracted over five cutter revolutions 

building the features space. Most of the literature uses those statistical values from time domain as 

features (see [2–4]). The accuracy of the two machine learning algorithms is tested on three different 

feature sets consisting out of the same data points: 

  features extracted from internal signals, 

  features extracted from external signals, and 

  merging the previous data sets. 

2.4.3. Data division  The major drawback of all classification models proposed in literature is its lack 

of generality. Trained and tested on the same cutting geometry (often simply straight cuts), the model 

cannot be transferred to other workpiece geometries. To prove the ability to generalize of our approach, 

we train the model on straight cuts but validate it on the data from the idealized impeller, Figure 1, 

representing structurally different data. We use 70 % of the data from the straight cuts to train the 

classification model; the remaining 30 % is used for testing. Table 2 provides the absolute number of 

data points. 

Table 2. Overview of the different data sets. 

 
Training Testing Validation 

Total number of data points 
65553 

(Straight cuts) 

28094 

(Straight cuts) 

6023 

(Impeller) 

Number of “sharp” data 

points – class A 
59667 25572 3012 

Number of “dull” data 

points – class B 
5886 2522 3011 

 

3. Results and discussion 

3.1. Results 

To evaluate the classification accuracy of the two machine learning algorithms on the different feature 

sets, Table 3 and Table 4 provide the confusion matrices of the test data and the validation data 

respectively. The row of a confusion matrix represents the estimated classes (indicated by the 

accent “^”) and the columns represent the actual classes (class A: “sharp”, class B: “dull”). A high 

value on the diagonal axis indicates a good performance. For the sake of convenience, we colored the 

cells of the matrix in traffic light colors. The secondary diagonal contains the number of wrong 

assignments. 
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Table 3. Results of the test data (straight cuts) for different feature sets (only signals from internal or 

external sensors and joint performance) and both algorithms: support vector machine (SVM) and 

random forest (RF). Class A: “sharp tool”, class B: “dull tool”. 

 
Intern Extern Intern + Extern 

SVM 

   

 
100 % 100 % 

 
0 % 0 % 

 

   

 
99,8 % 2,7 % 

 
0,2 % 97,3 % 

 

   

 
99,9 % 1,3 % 

 
0,07 % 98,7 % 

 

RF 

   

 
98 % 21 % 

 
2 % 79 % 

 

   

 
99,9 % 2,5 % 

 
0,1 % 97,5 % 

 

   

 
99,9 % 1,2 % 

 
0,03 % 98,8 % 

 

 

Table 4. Results of the validation data (idealized impeller geometry) for different feature sets (only 

signals from internal or external sensors and joint performance) and both algorithms: support vector 

machine (SVM) and random forest (RF). Class A: “sharp tool”, class B: “dull tool”. 

 
Intern Extern Intern + Extern 

SVM 

   

 
100 % 100 % 

 
0 % 0 % 

 

   

 
98 % 39 % 

 
2 % 61 % 

 

   

 
100 % 42 % 

 
0 % 58 % 

 

RF 

   

 
98,2 % 99 % 

 
1,8 % 1 % 

 

   

 
87 % 69 % 

 
13 % 31 % 

 

   

 
99 % 99 % 

 
1 % 1 % 

 

 

3.1.1 Feature sets  Regarding the feature sets, the internal signals alone are not suitable for tool wear 

classification. The random forest is able to achieve a solid classification accuracy on the test data, 

which has the same structure as the data on which the algorithm is trained. However, it is unable to 

generalize from it (only 1 % accuracy on class B, “dull”, Table 4). Using the features extracted from 

external signals results in an outstanding accuracy on the test data and even a solid accuracy on the 

validation data. This is in good accordance with the literature – which only tests on data that has the 

same structure as the training data. The accuracy and the sensitivity of the external sensors 

(dynamometer, current, and voltage sensors) and the sampling frequency is much higher than the 

internal signals provided by the machine controller. This drastically affects the accuracy of the 

classification algorithms. 

At the first glance, it is surprising that merging the features of the internal and the external signals 

does not lead the same or a higher classification accuracy as the features of the external signals alone. 

A possible reason for this is that the features extracted from the internal signals do not contain suitable 

information (bad accuracy if they are used alone) and increase the dimension of the feature space to 

Algorithm

Feature set

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

Algorithm

Feature set
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19 ∙ 3 = 57 dimensions. The problem of a reduced significance of the individual feature in a high-

dimensional feature space is known as “curse of dimensionality”. The feature space of the external 

signals has 6 ∙ 3 = 18 dimensions; the feature space of the internal signals 13 ∙ 3 = 39 dimensions.  

3.1.2. Classification algorithms  Both, the SVM and the RF, achieve a very high accuracy on the test 

data. Therefore, for evaluation purposes, we focus on the validation data, Table 4. The way in which 

randomization is introduced in multiple decision trees – by using a random subset of the feature space 

– makes RF particularly prone to the curse of dimensionality. If the majority of the features does not 
contribute to the classification objective, many trees are grown that have a low classification accuracy. 
Since RF relies on the majority vote of these trees, this severely affects the classification accuracy of 
the forest. Using more classes eases this problem as the wrong classifications may distribute among 
the more classes and a lower number of correct trees is required for a majority vote. Solving an 
optimization problem, the SVM is less prone to the curse of dimensionality.

3.2. Limitations and discussion 

Examining the points that are classified incorrectly more closer, Figure 3, reveals that both algorithms 

manage to classify sharp tools (class A) correctly: average accuracy 98.1 % (SVM) and 86.1 % (RF). 

Figure 3 depicts the accuracy rate in groups of 120 samples of the validation data. Note that the first 

3012 samples represent a sharp tool, whereas the remaining 3011 samples represent a dull tool. 

   Both algorithms experience a severe drop in accuracy when the tool wear class changes to 

“dull” (class B). However, as the tool wear increases the SVM is able to identify the dull tool 

correctly: average accuracy of the last six blades 99.2 % (SVM) and 18.9 % (RF). 

The arbitrary definition of a “sharp” and a “dull” tool may cause the problem of an ambiguous 

separation plane. Tool wear evolves continuously, which makes it difficult to define the exact point 

from where a tool is considered as “dull”. The sensor signals reflect this problem as they change 

gradually. Only if the tool suffers from breakouts, one may obtain a distinct separation plane. 

     The presented system itself suffers from the inaccuracy introduced by the missing rotational 

position of the spindle (which was reconstructed through cross correlation) and of the auxiliary drives 

(which was estimated through a Kalman filter). To exploit the full potential of this approach, the 

encoder signal of all motors must be known. In future research, the performance over multiple tools 

must be examined; as well as the sensitivity to more classes. 

Figure 3. Evolution of the classification accuracy in the validation data. Blue bars: SVM, gray bars: 

RF 

3.3. Notes to a practical application 

Within the rising digitalization and activities such as “Industry 4.0” or an “Internet of Production”, the 

production process itself becomes transparent. Machine tool manufacturers open their interfaces and 

include more sensors into their products. This work stresses the significance of signal quality but is 
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based on standard measurement equipment. Machine learning in particular provides a method to 

automatically analyze big data and robustly monitor e.g. tool wear. Considering the engagement 

conditions provided by some CAM programs and transforming all signals to the coordinate system of 

the tool enables to learn a model that is independent of the tool path and thus is even suited for single-

batch-production. All preprocessing and training can be conducted onsite on an edge computer – the 

resulting machine learning model may even be transferred to other machine tools. 

4. Conclusion 

This paper presents the first approach on tool wear classification that is validated on structural 

different data. This previously unreached level of generality is achieved by transforming the signals 

from the fixed machine coordinate system to the rotating coordinate system of the cutting edges. It is 

the first to use classical process characteristics such as the uncut chip thickness h and the uncut chip 

width b. Features are extracted from signal segments of five cutter revolutions, contributing to the 

objective of creating a model as generic as possible. Furthermore, this results in more data points than 

any study in literature. 

Two popular classification algorithms were examined: SVM and RF. Both achieve a very high 

accuracy on the test data (over 97 % for both classes). But SVM is able to obtain a more generic 

model from the straight cutting tests: 98 % for class A (“sharp”) and 61 % for class B (“dull”) on the 

blade geometry. 

Examining features from internal sensors (torque and current at fs = 400 Hz) and external sensors 

(force and current at fs = 10 kHz) indicates that  

 the higher quality and sampling rate of external sensors lead to a much more accurate 

classification; and that 

 adding the features extracted from the internal sensor worsens the performance (“curse of 

dimensionality”). 

With the raise of the digitalization at shop floor level more data and of higher quality will become 

available. This work outlines an automatic analysis and lies the basis to profit from data. 
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