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Abstract. In this paper we show the adaptability analysis of estimation algorithms based 

on mobile average autoregressive models (ARMA) in an easy implementation system 

composed of a network of operational amplifiers (OpAmp) known as the Sallen- Key. 

Parameters are adjusted by means of projection algorithms, projection algorithm with 

covariance matrix, Recursive Least Squares (RLS) and Normalized RLS. The 

comparison of the performance of the estimation algorithms shows that those based on 

RLS and Normalized RLS quickly stabilize their values before disturbances in the input 

signals of the dynamic system. 

 

1. Introduction 

The implementation of control algorithms requires the construction of a priori mathematical models 

that describe the evolution of a system according to initial conditions and parameters. However, in the 

case of dynamic systems, developing a mathematical model that determines their behaviour, outside of 

ideal conditions, requires considering a large number of parameters whose behaviour against 

perturbations can’t always be approximated to a linear and homogeneous relationship [1, 2], increasing 

the complexity of the model and the cost in computation time with implications in the control of 

processes in real time [3,4]. 

 The algorithms of adaptive estimation in dynamic systems allow to establish conditions on the model 

that facilitate, before disturbances, adjust the parameters relatively quickly and stabilize the response of 

the system [5], thus decreasing the response time of the control algorithms [6, 7]. 

 In this paper we show the adaptability analysis of estimation algorithms based on mobile average 

autoregressive models (ARMA) [8,9] in an easy implementation system composed of a network of 

operational amplifiers (OpAmp) known as the Sallen- Key. 

2. Materials and methods 

2.1. Dynamic system 

The simulation of a second order system based on a network of operational amplifiers (OpAmp) known 

as the Sallen-Key network was performed, the topology is shown in figure 1. An easy-to-implement 

system composed of an acquisition card was designed ARDUINO ONE, and an interface in MATLAB 

(Figure 2). 

 

mailto:jdnanez@sena.edu.co


Expotecnología 2018 "Research, Innovation and Development in Engineering"

IOP Conf. Series: Materials Science and Engineering 519 (2019) 012012

IOP Publishing

doi:10.1088/1757-899X/519/1/012012

2

 

 

 

 

 

 

 

Figure 1. Topology of the Sallen-Key network and its step response design.  

 

The design of the system is shown in Figure 1, which can be obtained the response of the dynamic 

system, was designed with the criterion of a maximum impulse (mp) of 50%, an establishment time (ts) 

of 3 seconds and a stable state gain 𝜇 of the Sallen-Key network (see equation 2) shown in Figure 1, its 

transfer function as a function of the circuit parameters (R and C) is shown in equation 1. 

𝐻(𝑠) =
𝜇 (

1
𝑅𝐶)

2

𝑠2 +
(3 − 𝜇)

𝑅𝐶 𝑠 + (
1

𝑅𝐶)
2               (1) 

𝜇 = 1 +
𝑅𝑓

𝑅𝑜
                     (2) 

Where, 𝑅 = 16.16𝑘Ω, 𝐶 = 10𝜇𝐹, 𝑅𝑓 = 15.69𝑘Ω and 𝑅𝑜 = 10𝑘Ω 

 

Figure 2. System assembly 

2.2. Estimation algorithms 

In this work an online estimation process is carried out. The estimation of parameters is based on 

autoregressive models of moving average (ARMA) [8]. This process can be done online if you have 

only one data at a time or offline if you have a data set. For the application of estimation algorithms in 

the identification of dynamic systems, it is necessary to capture the input signal 𝑢 (𝑘) and output of the 

system 𝑦(𝑘) and construct a discrete linear model in the time domain (Eq.3) and in differences (Eq. 4). 

The system can be carried to a reduced model for regression (Eqs. 5 and 6).  

 

𝐻(𝑧) =
𝑦(𝑧)

𝑢(𝑧)
=

𝑏1𝑧 + 𝑏2

𝑧2 + 𝑎1𝑧 + 𝑎2
      (3) 
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𝑦(𝑘) = −𝑎1𝑦(𝑘 − 1) − 𝑎2𝑦(𝑘 − 2) + 𝑏1𝑢(𝑘 − 1) + 𝑏2𝑢(𝑘 − 2)       (4)  

𝑦(𝑘) = [−𝑦(𝑘 − 1) −𝑦(𝑘 − 2) 𝑢(𝑘 − 1) 𝑢(𝑘 − 2)] [

𝑎1

𝑎2

𝑏1

𝑏2 

]      (5) 

 𝑦(𝑘) = 𝜑𝑇𝜃𝑜        (6) 

 

The parameters to be estimated are a1, a2, b1 and b2, which belong to the dynamic model of the system 

as shown in equation 1. These parameters are adjusted by means of projection algorithms, projection 

algorithm with covariance matrix, Recursive Least Squares (RLS) and Normalized RLS. 

The estimation algorithms that are compared in the development of this document are the following: 

 

a. Projection Algorithm (PA) 

𝜃𝑘 =  𝜃𝑘−1 +
𝜑

𝜑𝑇𝜑
(𝑦 − 𝜑𝑇𝜃𝑘−1)          (7) 

b. Projection Algorithm with Covariance Matrix (PA CM) 

𝑃𝑘 =  𝑃𝑘−1 −
𝑃𝑘−1𝜑𝜑𝑇𝑃𝑘−1

1 + 𝜑𝑇𝑃𝑘−1𝜑
          (8) 

𝜃𝑘 =  𝜃𝑘−1 +
𝑃𝑘𝜑

𝜑𝑇𝑃𝑘𝜑
(𝑦 − 𝜑𝑇𝜃𝑘−1)          (9) 

c. Recursive Least Squares (RLS) 

 

𝜃𝑘 =  𝜃𝑘−1 + 𝑃𝑘𝜑(𝑦 − 𝜑𝑇𝜃𝑘−1)          (10) 
 

d. Recursive Least Squares Normalized (RLS N) 

 

𝜃𝑘 =  𝜃𝑘−1 +
𝑃𝑘𝜑

1 + 𝜑𝑇𝑃𝑘𝜑
(𝑦 − 𝜑𝑇𝜃𝑘−1)          (11) 

With the equation (8) the calculation of the covariance matrix is performed, and in the same way for the 

algorithms shown in equations 9, 10 and 11. 

 

3. Methodology 

The methodology proposed for the development of the experimentation was carried out in the 

following way: 

 

a. To the capture of the set of input and output signals of the dynamic system was performed, 

although an off-line estimate could be made because the whole set of samples is available, 

the process will be performed simulating the implementation recursively. 

b. During the calculation of the estimation recursively by testing the 4 proposed algorithms, 

the calculation of the RMS error will be made for each algorithm, thus identifying those 

with the least error, this procedure will be carried out by means of a Monte Carlo 

experiment with a stop criterion based on the calculation of the minimum variance. 
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𝐸𝑟𝑚𝑠 = √
1

𝑁
∑(𝑦𝑖 − 𝜙𝑖

𝑇𝜃𝑖−1)
2

𝑁

𝑖=1

            (12) 

c. From the calculation of the estimate, we count on the signals generated from the 

parametric evolution during the estimation, to these signals obtained from the calculation 

of the average value and the minimum variance adjusting the RANSAC method to 

guarantee a constant as a result and the minimum variance this procedure was performed 

on the same Montecarlo experiment with the stopping criterion based on the minimum 

variance of the RMS error. 

d. The criterion for the identification of the adaptability and the estimation capacity is given 

by the algorithms that present the minimum mean squared error (RMS), and identifying 

those that present lower variance and therefore a static behavior in the parametric 

evolution during the process of estimation. 

 

4. Results and discussions 

For the estimation of the stable parameters of the dynamic system, the evolution of the parameters a2, 

a1, b2 and b1 was identified, and the parametric evolution of 4 recursive identification algorithms was 

compared. The comparison of the algorithms will be made using the same set of input and output signals 

(Figure 3). 

 

Figure 3. Set of input and output signals. 

 Figure 4 (Left) and (right) show the parametric evolution and the error, respectively, of the 

implementation of projection algorithms on the set of input and output signals shown in Figure 3. This 

implementation readjusts the parameters before changes of the input signal, however, does not allow to 

obtain a stable behavior. 
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Figure 4. Parametric evolution projection algorithm 

 

 Figure 5 shows the parametric evolution obtained by the projection algorithm with covariance matrix 

(left) and the associated error (right). As in the case of projection algorithms, the parameters are sensitive 

to disturbances but do not exhibit stability. 

 

 

Figure 5. Projection algorithm with covariance matrix. 

 Figures 6 and 7 show the evolution of the parameters before disturbances of the input signal (left) 

and the estimated error (right). These algorithms present the most optimal performances, minimizing 

the error and exhibiting a stable readjustment of the parameters against variations of the input signal. 

 

 

Figure 6. Evolution of RLS algorithms. 
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Figure 7. Evolution of Normalized RLS algorithms 

 The table 1 shows the relationship of the RMS errors obtained through the Montecarlo iterations, and 

in Figure 8 the behavior of the RMS error during the implementation of the Montecarlo experiment can 

be observed. 
 

Table 1. Comparison of the RMS error of the estimation algorithms using statistical moments, 

Montecarlo experiments approx. 1000 iterations. 

Estimation Algorithm Error RMS mean Error RMS 

deviation 

Projection Algorithm (PA) 0.1591 2973.50𝑥10−6 
PA with Covariance Matrix (PA CM) 0.1459 31.41𝑥10−6 
Recursive Least Squares (RLS) 0.0819 56.09𝑥10−6 
RLS Normalized (RLS N) 0.0885 5994.90𝑥10−6 

 

 

Figure 8. Comparison of the all algorithms using RMS error. 

 

 Table 2 shows the standard deviations obtained by the Montecarlo experiment, using in each iteration 

the RANSAC method to calculate the constant value and the minimum variance. 
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Table 2. Comparison of the standard deviations of the parameters Montecarlo experiments approx. 1000 

iterations. 

Estimation Algorithm Parameter 𝒂𝟏 

deviation 

Parameter 

𝒂𝟐 

deviation 

Parameter 

𝒃𝟏 

deviation 

Parameter 

𝒃𝟐 

deviation 

Projection Algorithm (PA) 0.1202 0.1175 0.0927 0.1685 

PA with Covariance Matrix (PA CM) 0.2202 0.1669 0.1465 0.1660 

Recursive Least Squares (RLS) 0.1458 0.0713 0.0284 0.0316 

RLS Normalized (RLS N) 0.1554 0.0955 0.0360 0.0376 

 

 

5. Conclusions 

An easy-to-implement system was built that allowed analysing the performance of the estimation 

algorithms defined in terms of their response to variations in signals and ability to estimate and adapt. 

The comparison of the performance of the estimation algorithms shows that those based on RLS and 

Normalized RLS quickly stabilize their values before disturbances in the input signals of the dynamic 

system, making it possible to approximate the transfer function in discrete time. 

From Table 1, it can be identified that the RLS and RLS N algorithms have the lowest mean squared 

error of estimation in comparison with the projection algorithms. However, the RLS algorithm not only 

has the lowest RMS error, but also the minimum standard deviation. In Figure 8 you can observe the 

behavior of the errors during the evolution of the Monte Carlo experiment. 

Finally, using table 2, we could identify that for each parameter of the estimation model the minimum 

possible variance was found, where for parameter 𝑎1, the PA algorithm showed the least deviation, 

however, the RLS algorithm is in second place, and for the rest of the parameters (𝑎2, 𝑏1  and 𝑏2) the 

algorithm has the least deviation. 

From the results obtained from the experimentation it can be concluded that the best estimation 

algorithm with parametric stability is the RLS algorithm, since it presents a low mean squared error of 

estimation, and the parametric evolution presents the minimum variance and stability in most of the 

estimated parameters. 
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