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Abstract. The ruin of energy and environmental pollution has led to the pursuit of novel 

technologies for green energy productions. For hydrogen energy itself, the search for the 

photocatalytic-based nanostructured β-SiC is one of the main research focus during the last few 

years. Herein, we reported the successful magnesiothermic reduction at low temperature, i.e., 

700 °C, using an argon gas tubular furnace to fabricate β-SiC with a particle size below 10 nm. 

The X-ray diffraction (XRD) data collection and Rietveld refinement showed the single phase of 

moissanite β-SiC formation having cubic structure with lattice constants of a = b = c  = 4.3523(50) Å 

and α = β = γ = 90°. The formation of the nanostructured β-SiC was well confirmed by the high-

resolution transmission microscopy (HRTEM) image. The equivalent crystallite size produced 

by the XRD profile analysis was 4.2(8) nm, and extracted from the HRTEM image was about 6 

nm. The d-spacing for (111) plane met a reliable agreement between the XRD and HR-TEM 

data. The energy dispersive X-ray spectroscopy in scanning transmission electron microscopy 

(STEM-EDS) also brought a good capture for the nearly 50:50 concentration of Si:C in our 

sample. Furthermore, in-situ heating experiments via HR-TEM were also conducted. In brief, 

carbon nanolayers were initiated on the surface of the nanostructured β-SiC. All these fine-tuned 

crystallographic properties assigned the as synthesized β-SiC to be the promising candidate for 

photocatalytic hydrogen production. 

Keywords: Nanostructured β-SiC, Rietveld refinement, in-situ HR-TEM, hydrogen production 

1.  Introduction 

We dream for a future where the planet we live in, the Erath, serves us with its best fresh air and where 

the industries are sustainable and clean. The best endeavor is to support the construction of power 

sources that eliminate pollution. Hydrogen production and full cell systems, for example, are claimed to 

have superior performances to replace nonrenewable hydrocarbon fuels [1,2]. Many attempts have been 

continuously made to optimize the performance of hydrogen production and fuel cell technologies [3–6]. 

Development of photocatalytic materials for water splitting turns out to be the supreme breakthrough to 

https://www.sciencedirect.com/topics/materials-science/energy-dispersive-x-ray-spectroscopy
https://www.sciencedirect.com/topics/materials-science/scanning-transmission-electron-microscopy
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hydrogen production advancement due to the abundant of solar light and the renewability of water 

resources [7]. 

Recent studies explored the role of photocatalytic water splitting for hydrogen production using β-

SiC [7–9]. This cubic structure of SiC, identified as β-SiC, is preferable than other polytypes of SiC. 

Although α-SiC is as powerful as β-SiC regarding its chemical and thermal stabilities, producing 

controlled cubic structured β-SiC is easier than the α-SiC which crystallizes in hexagonal structure [10]. 

Only one cubic crystal system does SiC have wherein there exist three double-layers of Si-C of the 

lattice stacking periodicities, and, hence, it is well known as 3C-SiC or β-SiC. The other Si-C stacking 

arrangements formed hexagonal and rhombohedral structures. Hexagonal SiC that has 6 and 4 Si-C 

double-layers, for example, are respectively recognized as 6H-SiC and 4H-SiC. The SiC properties are 

determined by its Si-C double-layers arrangements [11]. Thus, it is important to have good control, 

constructively, on the synthesized SiC.  

Numerous approaches have been achieved for fabricating and exploring the properties of β-SiC 

nanomaterials; some examples are given as follows. β-SiC nanospheres have been prepared via 

Terbium-catalyzed carbothermal reduction at 1200-1300 °C [12]. Microwave-assisted thermal 

evaporation using 1650–1750 °C [13], carbothermal reduction at 1500 °C [14], hot wire chemical vapor 

deposition with filament temperature of 2000 °C [15], combined method of carbothermal reduction and 

sol-gel impregnation employing two-step heating (using Ar gas furnace at 1050 °C followed by 1550 

°C heat treatments) [16], high-frequency induction using heat treatment at 1800 °C [17], and arc plasma 

heating at 3000 °C [18] were conducted to produce nanostructured β-SiC. However, the temperatures 

are still relatively high which give rise to synthesis expense and efficiency. In this present study, we 

report the establishment of magnesiothermic reduction approach for nanostructured β-SiC preparation. 

The magnesiothermic route relies on the SiO2 chemical bond breaking mechanism at lower 

temperatures, and it controls the arrangements of silicon carbide stacking arrangements [19].   

The performances of nanosized crystals extensively depend on their atomic structures. Nanoparticles, 

having nanoscale size and high surface area, demonstrate unique characteristics, and they are often 

significantly much more exclusive than those of the bulk polycrystalline materials [20]. As a result, 

XRD diffraction alone, for the detailed crystal structure analysis, is never enough to convey the 

fundamental nature of the crystalline characteristics of nanosized materials. Hence, a deeper 

investigation into the crystalline state of matter is required. Herein, we accomplished that via HR-TEM 

characterization to observe the lattice arrangements and to support the Rietveld crystal structure analysis. 

The fine-controlled β-SiC nanostructure will meet the criteria for photocatalytic materials for water 

splitting technologies. 

2.  Methods 

In this present study, highly purified nano silica SiO2, from a previous report [21], was wisely ground 

with C12H22O11. Precise quantities of H2SO4 and distilled water were added to the SiO2/C12H22O11 

mixture powder followed by six hours heating at 100 °C and elevated to 160 °C for the succeeding six 

hours. The heated powder underwent one-hour carbonation at 700 °C in an argon gas tubular furnace to 

decompose carbon from C12H22O11 which in turns forming SiC/C product. The composite was added by 

Mg powder and heated at 800 °C for 18 h at the same furnace costumed setting. The β-SiC crystal was 

further favorably accomplished by three-hour leaching process using HF and HNO3 solutions, which 

was designed for removing magnesium oxide and silicon dioxide impurities, using a hot plate with 

stirring speed of 600 rpm at 100 °C. Filtrating and cleaning were conducted with distilled water for 30 

minutes. For detailed structural characterization purposes, X-ray diffraction (XRD) and high-resolution 

transmission electron (HR-TEM) microscopy, integrated with energy dispersive X-ray spectroscopy in 

scanning transmission electron microscopy (STEM-EDS) were employed. 

The CuKα XRD (X’Pert Pro-Panalytical) was benefitted using 40 kV and 30 mA electrical setting. 

The divergence slit was fixed for continuous scanning. The as-produced SiC was characterized by the 

XRD from 10° to 80° with a step angle of 0.02 and scan step of 0.5 s. The recorded XRD pattern was 

matched by the appropriate phase model prior to Rietveld refinement analysis to reveal the SiC crystal 

https://www.sciencedirect.com/topics/materials-science/energy-dispersive-x-ray-spectroscopy
https://www.sciencedirect.com/topics/materials-science/scanning-transmission-electron-microscopy
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structure properties. The Rietveld refinement was run by Rietica software [22]. Scale factor was the first 

parameter to refine followed by using polynomial 5th order backgrounds and sample displace. The 

refinement of lattice parameter and atomic factors were conducted very carefully. In succession, the 

Voigt (How. Asym) peak shape was chosen to extract the equivalent particle size of the crystalline SiC. 

The Rietveld analysis was finished by refining the peak shape, including adjusting the preferred 

orientation for (111) Bragg plane using the March model. The Rietveld refinement can be accepted if 

and only if the calculated XRD pattern is well-fitted with the observed XRD pattern. 

Modern remote controlled HR-TEM and STEM-EDS with sharp brightness, high beam current 

produced field emission gun, and the constant powered objective lens was fully loaded to capture the 

nanostructural characteristics of the SiC product. The information limit and resolution were set at 0.12 

nm and 0.16 nm, respectively. The characterization was conducted at 200 kV with a minimum step size 

of 50 kV. The STEM-EDS chemical mapping was conducted at 700 °C, 1000 °C, and 1200 °C. 

3.  Results and Discussion 

After successful XRD data collection and phase identification, a very careful Rietica assisted Rietveld 

refinement has been run to extract the full crystallographic properties of the as-synthesized β-SiC. The 

refinement output plot is depicted in Figure 1. The phase identification revealed that the only occurring 

crystalline phase in the sample, based on the XRD profile, was moissanite 3C-SiC, without any other 

impurities. Hence, all diffraction peaks of the measured XRD profile (denoted by circles) are entirely 

matched and fitted with the calculated profile (denoted by a solid line), as can be viewed in Figure 1. 

The XRD pattern displays the excellent character of the crystalline β-SiC. Such high purity of single β-

SiC crystalline phase was also formed using a chemical vapor deposition method but higher 

temperatures, i.e., 1200-1400 °C [23]. The crystallographic data and Rietveld refinement report of the 

β-SiC can be attained from Table 1. The background is one of the most challenging parameters to deal 

with Rietveld refinement since it cannot be avoided. For any XRD pattern refinement, background gives 

many effects on the R-values [24]. As seen from Figure 1, the background displays polynomial function. 

That is why a polynomial fitting with five orders was chosen for background refinement fitting.  

 

 

Figure 1. The Rietveld refinement output for the nanostructured β-SiC synthesized by the 

magnesiothermic approach. The circles and the solid lines respectively represent the measured and 

calculated XRD profile. 
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Table 1. Crystallographic parameters for the β-SiC from Rietica assisted Rietveld refinement. The 

numbers in parentheses represent the corresponding last digits of the estimated results. 

 

Figure of Merits 

Rp (%) 12.05 

Rwp (%) 15.04 

Rexp (%) 17.10 

Gof (%) 0.77 

Background 

B-1 -451.43(26) 

B0 146.8(52) 

B1 -5.16(21) 

B2 0.069(30) 

B3 -0.00032(27) 

Asymmetry 0.34(1) 

Sample Displacement -0.13(2) 

Phase Scale factor 0.0097(5) 

Lattice Parameter (Å) a = b = c = 4.3523(50); α = β = γ = 90° 

Space Group F -4 3 m 

Cell Volume (Å3) 82.44(19) 

Density (g/cm3) 3.23 

Molecular Weight (amu) 160.39 

Derived Bragg R-factor 1.87 

Particle Size Equivalent (nm) 4.2(8) 

 

Table 2. Atomic positions of Si and C in the nanostructured β-SiC. 

Atom Type Symmetry Multiplicity X y z Occupancy 

Si Si4+ 4a 0 0 0 0.0833 

C C4- 4c 0.25 0.25 0.25 0.0833 

 

The five background parameters are depicted in Table 1. Those are the parameters governing the 

background profile for the as-synthesized β-SiC. The asymmetry dictates the difference plot of sine-like 

shapes of XRD pattern. Notice that the asymmetry value is in the accepted value, less than one and more 

than zero. Compared to all refinement parameters, the phase scale factor influences the most on the 

figure of merits. The phase scale is 0.0097(5) indicating that there is a huge difference in height 

intensities between the calculated and measured XRD patterns. In this case, the β-SiC diffraction 

intensities are much lower than those of the β-SiC XRD model. This finding brings a sign of a small 

crystallite size compensation. The full width at half maximum (FWHM) values varies from 2.15° to 

2.75°. Rietica enables the equivalent particle size calculation using the well-known Scherrer equation 

[25]. The equivalent particle size of β-SiC is below 10 nm, to be precise, it is 4.2(8) nm. In addition the 

lattice constants of the as-synthesized β-SiC are a = b = c = 4.3523(50) (Å). It is very close to the lattice 

parameters of β-SiC reported by others [26–28]. 

From the crystallographic viewpoint, the silicon and carbon atoms comprising SiC crystals are joined 

by the strong covalent bond. The strong bonds of sp3-hybridized tetrahedral sites empower every carbon 

or silicon atom to bind the other four nearest-neighbor silicons or carbons. This chemical interaction 

gives rise to the high performance of SiC to have outstanding thermal chemical and chemical stabilities. 

The SiC crystallographic profiles comprise of close-packed arrangements of bilayers of the atomic 

constituents. Among over 250 polytypes of SiC, due to the different silicon-carbon double layers, only 

a few of them are comprehensively explored [29]. Furthermore, β-SiC is one of the noblest polytypes 

which has not only seriously studied, but it has also been offering excellent performances in a wide 

range of applications [10,30].  
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Figure 2. Crystal model of the as-produced nanostructured β-SiC. The blue and black spheres 

respectively represent silicon and carbon atoms. 

 

  

Figure 3. HR-TEM image at the [111] direction (left) and the elemental STEM-EDS mapping of the 

cubic nanostructured β-SiC prepared by magnesiothermic route. 

 

Furthermore, the atomic sites of the nanosized β-SiC are given in Table 2. Being located at 4a and 

4c Wyckoff positions for Si and C, respectively, they lie in specific atomic locations as tabulated in 

Table 2. Hence, from these crystallographic data, the crystal model for β-SiC, which is visualized using 

VESTA [31], a 3D visualization software for structural modeling, is captured in Figure 2. Visibly from 

Figure 2, the silicon atoms are located at the faces of the cube and the corner lattice points. All Si-C 

bilayers are arranged in the same orientation producing a zinc blende structure for β-SiC [32]. Our study 

confirmed that SiC exhibited tetrahedral molecular bonding with a central silicon atom surrounded 

equidistantly by four carbon atoms, or vice versa. 

Figure 3 displays the lattice arrangements at [111] direction captured by HR-TEM and the elemental 

mapping with STEM-EDS. Using the STEM-EDS measurement for 8 minutes and screen current of 200 

µA, the distribution of silicon (47.1 at%) and carbon (52.9 at%), which is nearly 50:50, is shown in 

Figure 3 (right). The β-SiC are comprised of repeating dark and white adjacent layers. That white layers 

represent the (111) planes which are clearly well arranged with the nearest neighboring planes of nearly 

0.25 nm. This interplanar spacing is in an excellent agreement with β-SiC nanostructure with a particle 

size of 4 nm [33], β-SiC nanosphere having diameter of 30 nm [34], and β-SiC nanowires with 50 nm 

in diameter. The d-spacing corresponds to the XRD data using the Bragg angle of 35.7°. This fine-

structured of nano β-SiC are promising for hydrogen production, in particular for the photocatalyst. 
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Figure 4. In-situ heating treatment using HR-TEM on the nanostructured β-SiC produced by 

magnesiothermic route. 

 

The in-situ heating treatment using HRTEM reveals the evolution of ultra-fine sized β- SiC 

nanocrystals with good monodispersity, as can be observed from Figure 4. The average grain size of the 

β-SiC was approximately 6 nm, very close to the equivalent particle size extracted from the Rietveld 

method. The clear (111) crystalline planes can be again observed, after the digital zoom in view, of 700 °C and 

1000 °C heat exposures. Unlike the well-aligned crystalline plane for T = 700 °C, some carbon layers 

appeared on β-SiC particles’ surface at 1200 °C. Black carbon layers, by another study [35], were formed 

on β-SiC-(1 1 1) surfaces at 1360 °C and were confirmed by Raman scattering experiments. The growth 

of carbon nanotubes is located on the β-SiC nanoparticles' surface at [111] direction [36]. From this 

analysis, we may safely say that the carbon nanolayers are the manifestation of heating treatment of 

1200 °C. Some carbon atoms started to diminish from the silicon-carbon strong chemical bond due to 

the thermal-driven external energy. These real-time evolutions can only be observed by the use of 

advanced HR-TEM. The tracing of this atomic-scale few changes is rather difficult to detect by powder 

XRD. Overall, the in-situ heating treatment by means of HRTEM clearly revealed the β-SiC crystalline 

state, as previously analyzed from XRD. 

4.  Conclusion 
In this study, the detailed crystal structure investigations, from XRD to in-situ heat treatment HR-TEM, 

have been completed. On top of these successfully advanced measurements, the accomplishment of 

highly crystallized β-SiC was the half-success of the work. The beauty of crystal planes alignments, 

particularly in [111] direction, which corresponds to the highest XRD diffraction peak, within the cubic 

structured β-SiC nanoparticle was observed by HR-TEM image. In general, the in-situ HR-TEM dictated 

the fine crystalline state of β-SiC, including the presence of carbon nanolayers at a heating temperature 

of 1200 °C. These carbon nanolayers formation is a physical consequence of heating treatment at high 
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temperature. The STEM-EDS experiment revealed the proportionality of silicon and carbon atoms, with 

the values of respectively 47.1 at% and 52.9 at%. Last but not least, the fine structure of β-SiC is the 

key prior to being designed for any technological fields, including the hydrogen production application. 
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