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Abstract. Research on materials classified into strongly-correlated systems has become a crucial 

subject due to the strong interactions among the material constituents yielding various exotic 

physical properties and phenomena. There have been many computational methods developed 

to address the properties of such systems accurately within the Hubbard model, but most of them 

require a lot of computational costs to expect good results. In this research, we proposed a new 

approach within the Dynamical Mean Field Theory (DMFT) framework that requires a simpler 

and potentially less numerical-cost algorithm. We implemented this algorithm by constructing 

the local self-energy matrix elements that depend on the occupancy fluctuations. We integrated 

them over all possible occupancy configurations to obtain the fully interacting Green functions. 

The resulted Green function matrix was then used to compute the density of states (DOS) and 

other quantities. We investigated the case of quarter filling. Our computation results showed that 

pseudogap appeared when the onsite Coulomb repulsion was sufficiently high and tended to 

diminish as temperature increased. The system preserved its paramagnetic metallic character for 

all circumstances we studied.  

Keywords: Hubbard model, quarter filling, dynamical mean field theory, DOS 

1.  Introduction 

The strongly-correlated system is a condensed-matter system in which the constituent particles strongly 

interact with one another directly or indirectly yielding exotic physical properties and phenomena that 

depend on temperature, pressure, doping level, and other factors. Among the notable phenomena 

emerging in this system are, for instance, Mott-Hubbard metal-insulator transition [1] and charge 

ordering where the charges tend to localize on different sites due to the strong on-site electron-electron 

interactions [2,3]. In this regard, nowadays, the Hubbard model is believed to provide a way to explain 

how the interaction among electrons gives rise to such phenomena. Despite its simplicity, the Hubbard 

model has proven that it is capable of capturing many of the most subtle and fascinating properties of 

solid state systems [4].  

Numerous computational methods have been developed to address the properties of the strongly-

correlated systems accurately within the Hubbard model. However, most of them require a lot of 

computational costs to expect good results. For instance, the use of exact diagonalization technique is 

limited by the exponential growth of the computation time with system size, while, Quantum Monte 
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Carlo method usually faces the minus-sign problem at low temperatures [5]. On the contrary, mean field 

theory (MFT) offers low numerical cost but has several drawbacks as the method completely freezes 

both spatial and local quantum fluctuations. Beyond MFT, dynamical mean field theory (DMFT) 

provides an approximation to privilege these fluctuations by treating them from the beginning in a non-

perturbative manner [6]. Related to the aforementioned issue, we aimed to propose a new approach 

within the DMFT framework that requires a simpler and potentially less numerical-cost algorithm that 

can still manage to explain the occupancy fluctuation effects. This new DMFT algorithm treats 

occupancy fluctuations as classical quantities. The idea is motivated by similar treatment of the 

semiclassical DMFT implementation for electron-phonon coupling [7]. To evaluate the performance of 

this algorithm, here we address the behavior of three-dimensional Hubbard model at a quarter filling by 

inspecting how the corresponding DOS evolves as a function of the on-site Coulomb repulsion 𝑈 and 

temperature 𝑇. 

2.  Methods 

2.1 Model 

As described earlier, we wished to study the three-dimensional Hubbard model at a quarter filling. To 

accommodate the possibility of staggered orderings such as charge order and anti-ferromagnetic phase, 

we apply the model to a bipartite lattice where we distinguished two different sub-lattices (𝐴 and 𝐵) 

forming a NaCl-like structure. The Hamiltonian reads as expressed in Equation 1. 

𝐻 = −𝑡 ∑

𝑖,𝑗,𝜎

(𝑐𝑖𝐴𝜎
† 𝑐𝑗𝐵𝜎 + 𝑐𝑗𝐵𝜎

† 𝑐𝑖𝐴𝜎) + 𝑈 ∑

𝑖

(𝑛𝑖𝐴↑𝑛𝑖𝐴↓ + 𝑛𝑖𝐵↑𝑛𝑖𝐵↓) − 𝜇 ∑

𝑖,𝜎

(𝑛𝑖𝐴𝜎 + 𝑛𝑖𝐵𝜎). (1) 

The first term represents hopping of electrons between nearest-neighbor sites of different sub-lattices 

with the hopping parameter 𝑡. The indices (i,j) represent unit cells, while (A, B) represent sub-lattices, 

and  𝜎 denotes the spin component of electrons. The second term corresponds to the on-site Coulomb 

repulsion, with 𝑈 being the corresponding parameter. The third term is introduced to control the filling, 

where 𝜇 is the chemical potential. Here  𝑛𝑖𝐴(𝐵)𝜎 = 𝑐𝑖𝐴(𝐵)𝜎
† 𝑐𝑖𝐴(𝐵)𝜎, is occupation number operator of 

electrons occupying unit cell i and sublattice A(B) with a spin component 𝜎.  

2.2 Method of Calculation 

In this work, we proposed a new approach as an impurity solver within dynamical mean field theory 

framework. We started by using the standard dynamical mean field algorithm, where we defined an 

initial guess of the self-energy matrix [Σ(𝑧)], with 𝑧 = 𝑖𝜔𝑛 + 𝜇 (in the Matsubara-frequency domain), 

or 𝑧 = 𝜔 + 𝑖0+ (in the real-frequency domain). Here, 𝜔𝑛 = (2𝑛 + 1)𝜋𝑘𝐵𝑇, with 𝑛 =
⋯ , −2, −1,0,1,2, … is the fermionic Matsubara frequency [8]. We defined the Green function matrix 

through the Dyson equation as expressed in Equation 12-4. 

[𝐺(𝒌, 𝑧)] = [𝑧 − [𝐻0(𝒌)] − Σ(𝑧)]−1. (2) 

 

The Green function matrix was then averaged over 𝒌-points in the Brillouin zone  

[𝐺(𝑧)] =
1

𝑁
∑[𝐺(𝒌, 𝑧)]

𝒌

. (3) 

Next, we extracted the mean-field Green  function matrix through 

[𝐺(𝑧)]MF = [[𝐺(𝑧)]
−1

+ [Σ(𝑧)]]

−1

. (4) 

At this step, we entered the new impurity solver we were proposing. The expression of the interaction 

term can be written as expressed in Equation 5. 
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𝑈 ∑

𝑖

(𝑛𝑖𝐴↑𝑛𝑖𝐴↓ + 𝑛𝑖𝐵↑𝑛𝑖𝐵↓) =
𝑈

2
∑

𝑖

(𝑛𝑖𝐴↑𝑛𝑖𝐴↓ + 𝑛𝑖𝐴↑𝑛𝑖𝐴↓+𝑛𝑖𝐵↑𝑛𝑖𝐵↓ + 𝑛𝑖𝐵↑𝑛𝑖𝐵↓)

=
𝑈

2
∑

𝑖

[𝑛𝑖𝐴↑(⟨𝑛𝑖𝐴↓⟩ + 𝛿𝑖𝐴↓) + (⟨𝑛𝑖𝐴↑⟩ + 𝛿𝑖𝐴↑)𝑛𝑖𝐴↓ + (⟨𝑛𝑖𝐵↑⟩ + 𝛿𝑖𝐵↑)𝑛𝑖𝐵↓

+ 𝑛𝑖𝐵↑(⟨𝑛𝑖𝐵↓⟩ + 𝛿𝑖𝐵↓)] 
 

(5) 

where we treated the occupancy fluctuations (𝛿𝑖𝐴(𝐵)σ) as classical quantities that we varied continuously 

between (1 − ⟨𝑛𝑖𝜎⟩) and (−⟨𝑛𝑖𝜎⟩). We then defined the local self-energy matrix that carried the 

dependence on the average occupancies and their fluctuations as expressed in Equation 6. 

 

          [Σ(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)]loc = 

            
𝑈

2

[
 
 
 
(⟨𝑛𝐴↓⟩ + 𝛿𝐴↓) 0 0 0

0 (⟨𝑛𝐴↑⟩ + 𝛿𝐴↑) 0 0

0 0 (⟨𝑛𝐴↑⟩ + 𝛿𝐴↑) 0

0 0 0 (⟨𝑛𝐵↓⟩ + 𝛿𝐵↓)]
 
 
 

,  
(6) 

where we have dropped the unit cell index i as the expression holds for each unit cell.  

From the local self-energy matrix, we could construct the local interacting Green function matrix as 

expressed in Equation 7. 

[𝐺(𝑧, ⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)]loc

= [[𝐺(𝑧)]MF
−1 − Σ(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)]loc]

−1. 
(7) 

Further, we constructed the effective action as expressed in Equation 8. 

𝑆eff(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)eff

= − ∑

𝑛

ln|[𝐺(𝑧)]MF
−1

[𝐺(𝑧, ⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)]loc|𝑒
𝑖𝜔𝑛0+ (8) 

From the effective action, we could define the statistical weighting factor (𝑃) and the partition function 

(𝑍) as expressed in Equation 9-10. 

𝑃(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)        

=
1

𝑍
exp{−𝑆eff(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓)eff} 

(9) 

𝑍 = ∫𝑑𝛿𝐴↑ ∫𝑑𝛿𝐴↓ ∫ 𝑑𝛿𝐵↑ ∫𝑑𝛿𝐵↓  𝑃(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓). 

 

(10) 

The weighting factor was used to average the local interacting Green function matrix over all possible 

values of occupancy fluctuations through Equation 11 

[𝐺(𝑧)]ave = ∫𝑑𝛿𝐴↑ ∫𝑑𝛿𝐴↓ ∫𝑑𝛿𝐵↑ ∫𝑑𝛿𝐵↓ 𝑃(⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓) 

[𝐺(𝑧, (⟨𝑛𝐴↓⟩, ⟨𝑛𝐴↑⟩, ⟨𝑛𝐵↓⟩, ⟨𝑛𝐵↑⟩, 𝛿𝐴↑, 𝛿𝐴↓, 𝛿𝐵↑, 𝛿𝐵↓))]loc
, 

(11) 

from which  we could re-calculate the self-energy matrix as expressed in Equation 12. 

[Σ(𝑧)] = [𝐺(𝑧)]MF
−1

− [𝐺(𝑧)]ave
−1. (12) 

We then checked the convergence by comparing the initial guess and the recalculated self-energy 

matrices, and iterated the entire steps until the convergence was achieved. We must perform the 
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iterations in both the Matsubara and real-frequency domains, where the real-frequency loop may be 

placed inside the Matsubara-frequency loop, with the sequence being exactly the same for both loops, 

except that the statistical weighting factor (𝑃) is only computed in the Matsubara-frequency domain.  

From the averaged Green function in Eq. (2) or Eq. (11) in the real-frequency domain, we could 

calculate the density of states (DOS) as  

DOS(𝜔) = −
1

𝜋
ImTr[𝐺(𝜔 + 𝑖0+)]. (13) 

The chemical potential value 𝜇 may be guessed in the initial step in Eq. (1), but needed to be updated    

throughout the iterations by imposing the total occupancy constraint corresponding to the quarter-filled 

system, that is 

⟨𝑛⟩ = ⟨𝑛𝐴↑⟩ + ⟨𝑛𝐴↓⟩ + ⟨𝑛𝐵↑⟩ + ⟨𝑛𝐵↓⟩ = 1 (14) 

with 

⟨𝑛𝜆𝜎⟩ = ∫𝑑𝜔 PDOS𝜆𝜎(𝜔)𝑓(𝜔, 𝜇, 𝑇) (15) 

being the average electron occupancy at sub-lattice 𝜆 with spin 𝜎, and the projected DOS (PDOS) being 

defined as  

PDOS𝜆𝜎 = −
1

𝜋
Im𝐺𝜆𝜎(𝜔 + 𝑖0+). (16) 

The calculated ⟨𝑛𝜆𝜎⟩ was used in the computation of new local self-energy matrix elements in Eq. 

(6). We iterated all the above steps until the convergence was achieved.  

3.  Results and Discussion 

For our calculations, we set the hopping parameter fixed at 𝑡 = 1 eV. First, we studied how the DOS 

evolved as we varied 𝑈 at a fixed low-temperature value 𝑇 = 50 K. The results are shown in Figure 1. 

We saw that 𝑈 = 3 eV was a very shallow pseudogap just started to appear (below this 𝑈 value, no 

noticeable pseudogap was observed). As we increased 𝑈 with 𝑇 kept fixed, the pseudogap became more 

noticeable and eventually became almost a full gap at 𝑈 ≥ 5 eV. Note that all the DOS curves were 

plotted with respect to  𝜔 − 𝜇. Hence, the condition of 𝜔 − 𝜇 = 0 marked the position of the chemical 

potential. From the figure, we can see that as the pseudogap developed until it became almost a full gap, 

the chemical potential stayed outside the pseudogap or the gap region. This means that the formation of 

the gap did not lead the system to transform into an insulator. In other words, the system remained a 

metal. As a comparison, in the case of half filling, the standard 3D Hubbard model for large 𝑈 revealed 

the gap into which the chemical potential falled. This means that each electron tended to localize at a 

site, effectively resulting no electron being itinerant [8]. 

Next, for the relatively large 𝑈 values where the system had established almost a full gap,  we varied 

the temperature 𝑇 and showed how the DOS evolved with the temperature.  Figure 2(a) and 2(b) show 

the evolution of DOS as a function of temperature for 𝑈 = 5 eV and 𝑈 = 6 eV, respectively. As the 

temperature increased, we observed that the pseudogap tended to become more shallow and eventually 

disappeared. These results seemed to hold generally for all variants of the Hubbard model at high 

temperatures [8].  

At this point, we would like to comment that, to the best of our knowledge, there is not much existing 

literature that shows explicitly the density of states away from half filling or specifically at quarter 

filling. The closest match to our model is Ref. [9], where at Figure 10, it shows the density of states for 

a system away from half filling in which there existed a pseudogap with the chemical potential lying 

outside the pseudogap. This is consistent with the behavior shown by our density of states results that 

characterizes the system as a metal. 
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 In addition to studying the evolution of DOS, we also studied the possibility of formation of an 

ordered phase in this model by computing the corresponding order parameter. In this study, we inspected 

the ferromagnetic order parameter,   

 

𝑚 = (⟨𝑛𝐴↑⟩ + ⟨𝑛𝐵↑⟩) − (⟨𝑛𝐴↓⟩ + ⟨𝑛𝐵↓⟩), (17) 

the ferromagnetic order parameter,   

𝑚staggered = (⟨𝑛𝐴↑⟩ − ⟨𝑛𝐴↓⟩) + (⟨𝑛𝐵↓⟩ − ⟨𝑛𝐵↑⟩), (18) 

and the charge order parameter,   

CO = (⟨𝑛𝐴↑⟩ + ⟨𝑛𝐴↓⟩) − (⟨𝑛𝐵↑⟩ + ⟨𝑛𝐵↓⟩). (19) 

Our results were zero for all the above order parameters for all 𝑈 and 𝑇 values indicating that the 

system represented by the 3D Hubbard model at quarter filling was always in the paramagnetic phase. 

As far as our knowledge, the charge ordering phase has been reported in the extended Hubbard model, 

that is the Hubbard model that includes the intersite Coulomb repulsion, which is not the same as the 

model we present here.  

Overall, our calculations basically revealed the same physics known to exist in the 3D Hubbard 

model at quarter filling. This suggests that our algorithm can be a legitimate alternative impurity solver 

for the Hubbard model within DMFT. In addition to the potentially less computational cost compared 

to other more sophisticated methods,  this new algorithm may offer a more convenient way to compute 

the dynamical (i.e. frequency dependent) quantities, as the algorithm allows one to directly harvest the 

retarded Green function from the self-consistent proces. With this, we did not need to do analytic 

continuation numerically as it might be needed by other DMFT methods, such as Quantum Monte Carlo 

[6]. 

 

Figure  1. The density of states for various 𝑈 values at fixed temperature 𝑇 = 50 K 
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4.  Conclusion  

We have demonstrated a new algorithm of DMFT impurity solver for 3D Hubbard model at a quarter 

filling, based on treating the occupancy fluctuations semiclassically. We tested our algorithm by 

evaluating the DOS for various 𝑈 values at a fixed temperature, and for the various temperatures at fixed 

𝑈 values. As 𝑈 increased at a fixed temperature, the DOS formed a pseudogap that became deeper and 

wider with the increasing 𝑈. Meanwhile, by varying temperature for various temperatures at a fixed 𝑈, 

the pseudogap in the DOS tended to become more shallow and eventually diminish at very high 

temperatures. We also inspected the possibility of some ordered phase formations, and have found that 

the system remained in  the paramagnetic metallic phase for all 𝑈 values and temperatures. All these 

results are consistent with those reported in the literature relevant for 3D Hubbard model at quarter 

filling. Besides offering a potentially cheaper computation, our algorithm may also offer a convenient 

way to compute the dynamical quantities as it does not need to employ numerical analytic continuation 

process. After all, further development of the method remains necessary to check its general validity for 

a broader spectrum of model parameters. 
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