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Abstract. Photo-supercapacitor is a combination of solar cells and supercapacitor which 

intensively being developed. Photo-supercapacitor performance is influenced by the efficiency 

of solar cells and storing and releasing capacity of supercapacitors. Any types of either solar 

section or supercapacitor sections could be used. In the DSSC solar cell, one of the influential 

variables is the performance of the photoanode. The photoanode with semiconducting metal 

oxides play a role in charges mobility and light absorption process, which are influenced by 

crystal morphology and structures. The common metal oxides used are ZnO and TiO2 which 

show high electron mobility, wide band gap, and good optical properties. This work is designed 

to investigate the effect of annealing temperature of the composite layer of ZnO and mesoporous 

TiO2 on structure, morphology, optical absorption, and photo-supercapacitor performance. The 

ZnO compact layer was deposited onto the FTO substrate by a spin coating method with various 

annealing temperature. The mesoporous TiO2 layer was deposited on top of the ZnO compact 

layer by means of screen printing method. The construction of photo-supercapacitor model 

comprises DSSC and BaTiO3-PVDF symmetric supercapacitor which integrated by using 

aluminum substrate. Characterization was done using XRD, SEM, UV-Vis, and I-V solar 

simulators for the performance of photo-supercapacitor.   

Keywords: Photo-supercapacitor, annealing temperature, ZnO compact layer, mesoporous 

TiO2. 

1.  Introduction 

Generation and storage electrical energy device such as photo-supercapacitor have been the subject of 

many research interest in recent years [1–4]. Photo-supercapacitor is interesting to be developed because 

of it’s perform the combination of solar cell and supercapacitor simultaneously, so other conventional 

devices and size can be reduced [2–6]. One of the photo-supercapacitor is a combination of dye-

sensitized solar cell (DSSC) and supercapacitor based on electric double layer capacitors (EDLC) 

[1,4,6–10]. The combination of those two devices may affect not only of each section but also the 

interconnection between them.  

Several sections which influenced the DSSC efficiency are metal oxide at photoanode, 

photosensitizer (dye), electrolyte, and counter electrodes [11–14]. The photoanode electrode with metal 
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oxide effect on collecting and transferring electrons from the dye to transparent conductive oxide (TCO). 

There are many studies have been conducted to optimize metal oxide materials with various n-type 

semiconductors such as TiO2, ZnO, and SnO2 [12,15–19]. TiO2 is the main candidate for DSSC 

photoanode because of its wide band gap, thermal stability, non-toxic, and stable under sunlight 

[12,20,21]. In addition, TiO2 in nanometer size and porous morphology not only good for dye absorption 

but also has electron interfacial recombination faster than other metal oxides [22–24]. However, TiO2 

shows quite low electron mobility, which has an impact on conversion efficiency [25]. One way to 

increase electron mobility in TiO2 needs to be modified its morphology or composites with other metal 

oxides. 

The morphological structure of mesopore TiO2 apply as photoanodes DSSC can improve conversion 

efficiency, but the interface between mesopore TiO2 with TCO such as indium tin oxide (ITO) or 

fluorine tin oxide (FTO) is low [26,27]. It is necessary to modify the photoanode structure by introducing 

a compact layer such as ZnO between mesopore TiO2 and TCO. In addition, ZnO can increase electron 

mobility in DSSC photoanodes because ZnO has high electron mobility (115-155 cm2V-1s-1) [28]. Many 

works have been performed in combining TiO2 with ZnO with core-shell structure [29], composite TiO2 

nanoparticles with ZnO nanorod [18], ZnO nanowire / TiO2 core-shell nanosheet [30], compact layers 

TiO2 [31], and ZnO nanoflower composites with TiO2 nanorod [28]. Those efforts aimed to enhance the 

DSSC efficiency. 

The efficiency energy conversion is expected to increase by combining TiO2 mesopore with compact 

layer ZnO at DSSC’s photoanode. In the long run, it affects the performance of photo-supercapacitor. 

One type of EDLC supercapacitor by using BaTiO3 is exciting to be studied. BaTiO3 is a ferroelectric 

ceramic which exhibits an excellent of pyro, piezo, and capacitance properties [32,33]. However, since 

ceramic is a brittle and rigid material which need to be combined with polymers such as polyvinylidene 

fluoride (PVDF) which has a flexible, easily composited, and has good capacitance [32]. One type of 

photo-supercapacitor with the best design is three photo-supercapacitor electrodes exhibit maximum 

voltage, high power, and energy density, have high efficiency, fast charge and discharge, and durable 

[1,4,7,34]. The interface between mesoporous TiO2 with TCO and electron mobility in DSSC 

photoanodes for mesopore TiO2 is too low to be implemented. We report three gates photo-

supercapacitor performance by implementing a compact layer ZnO with mesoporous TiO2 and ZnO rods 

combined with symmetric supercapacitor PVDF-BaTiO3. 

2.  Methods 

An FTO-glass substrate was firstly cleaned following a standard protocol. Compact layer ZnO was 

deposited on FTO-glass substrate using a spin coating method. ZnO solution was prepared using Zinc 

acetate dehydrate (Zn(CH3COO)2.2H2O) Sigma-Aldrich 99% in ethanol and added 0.5 mL 

Monoethanolamine (MEA) Sigma-Aldrich 99% as a stabilizer. Mesoporous TiO2 was layered on 

compact layer ZnO by screen printing method. Mesoporous TiO2 paste was prepared by TiO2 (P25) 

Sigma-Aldrich 99%, Sodium dodecyl sulfate (SDS), Polyethylene glycol 6000 (PEG) in distilled water. 

The ZnO solution was deposited on the mesoporous TiO2 layer by a spin coating method. FTO/ZnO/ 

TiO2 -ZnO was dried at 100 °C followed by annealed for a various temperature of 300, 350, and 400 °C 

for 2 hours. Photoanode electrode FTO/ZnO/ TiO2 -ZnO with the codes for each annealing temperature 

were ZnTi 300, ZnTi 350, and ZnTi 400 respectively. The counter electrode was prepared by carbon 

tape at aluminum foil substrate, then heated at 250 °C for 30 min. 

Supercapacitor was designed by symmetry PVDF-BaTiO3 on aluminum foil substrate with hydrogel 

electrolyte and Polytetrafluoroethylene (PTFE) as a separator. A PVDF-BaTiO3 paste was deposited on 

an aluminum substrate by slip casting. Hydrogel electrolyte was prepared by polyvinyl alcohol (PVA), 

potassium hydroxide (KOH), and potassium iodide (KI) in distilled water. Photo-supercapacitor was 

designed by modifying the design as described by Lau et al. [1] is represented by Figure 1. DSSC was 

constructed by sandwiching photoanode and counter electrode with quercetin and beta-carotene dye and 

I-/I3- electrolyte. DSSC was combined with symmetric supercapacitor become photo-supercapacitor. 
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The structure and morphology of the nanostructured photoanodes were characterized by the use of a 

scanning electron microscopy (SEM Merk FEI, Type: Inspect-S50). The X-ray diffraction (XRD) 

pattern was recorded using an XRD E’Xpert Pro PANalytical with Cu-kα (λ= 1.54060 Å, 35 mA, dan 

40 kV) at 2θ in the range of 10-80°. Optical properties of the photoanode film were scanned at a 

wavelength of 200-800 nm with UV-Vis UV1700. Photovoltaic and photo-charging were measured for 

current vs. time (I-t) and voltage vs. time (V-t) by Keithley 6515B Electrometer under 20 mW/cm2 

illumination. 

 
Figure 1. Schematic of photo-supercapacitor device modified from ref. [1]. 

3.  Results and Discussion 

XRD pattern of the photoanode electrode with various annealing temperature shows in Figure 2. All 

the Bragg peaks in the XRD pattern can be indexed well to the anatase TiO2phase COD 2310710 [35], 

ZnO phase COD 9004178 [36], and FTO JCPDS card no. 01-0625 [37]. Anatase TiO2 has a tetragonal 

crystal system with I41/amd space group and ZnO crystallized under P63mc space group. The variation 

in the annealing temperature does not look significant for the ZnO phase due to compact layer ZnO at 

the bottom layer [37,38]. 

Rietveld refinement was calculated for the composite of ZnO and TiO2 (later indicated as ZnTi) 400 

XRD pattern using GSAS software shows in Figure 3. It is shown that TiO2 lattice parameters fall to 

a = b = 3.750 Å and c = 9.5053 Å. The obtained lattice parameters of ZnO phase is a = b = 3.2494 Å 

dan c = 5.2038 Å. Reliability Rietveld refinement between calculation and experiment data ZnTi 400 

are Rp = 0.1999, Rwp = 0.3005, dan χ2 = 1.413. Figure 3 (b) and (c) shows a crystal structure of TiO2 

and ZnO respectively using VESTA software. 

XRD pattern of supercapacitor electrode with PVDF-BaTiO3 is shown in Figure 4. All the diffraction 

peak in the XRD pattern is appropriate with PVDF phase CSD LILXIN05, BaTiO3 phase COD 4124842, 

and Aluminum foil. BaTiO3 phase fit to cubic crystal structure with Pm-3m space group and PVDF 

phase has orthorhombic crystal system with Cm2m space group. Rietveld refinement of XRD pattern 

has been done using GSAS software. Kisi parameter of BaTiO3 phase is a = b = c = 4.025419 Å and 

PVDF phase are a = 8.5822, b = 4.9102, c = 2.559 Å. Good reliability Rietveld refinement are Rp = 

0.2741, Rwp = 0.1906, dan χ2 = 1.483. Crystal structure of BaTiO3 and PVDF shows in Figure 4 (b) and 

(c) respectively. Equation 1 represents the Scherrer formula used to calculate the crystal size of BaTiO3 

is 41.3 nm. 

 
cos

k
d



 
=

 (1) 

where d is crystal size, k is shape factor, λ is wavelength Cu-kα, β is full width at half maximum 

(FWHM), and θ is the Bragg position.  
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Figure 2. XRD pattern of photoanode electrode with various annealing temperature 

    
 (a) (b) (c) 

Figure 3. Rietveld refinement of ZnTi 400 using GSAS (a), crystal structure of TiO2 (b) and ZnO (c) 

   
 (a) (b)  (c) 

Figure 4. XRD pattern with Rietveld refinement using GSAS of PVDF-BaTiO3 (a), crystal structure 

of BaTiO3 (b), and PVDF (c) 
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Figure 5 shows the top-view SEM of the photoanode electrode at the various annealing temperature. 

The morphology of TiO2 is mesoporous and ZnO growth to nanorods. The annealing temperature is 

linearity influencing crystal growth of ZnO nanorods diameter is shown in insert picture Figure 5. 

Crystal growth of ZnO at compact layer increase interfacing between mesoporous TiO2 and FTO 

substrate to provide electron mobility increase [31,39,40]. 

 
 (a)  (b)  (c) 

Figure 5. SEM image of photoanode electrode with various annealing temperature 300 (a), 350 (b), 

and 400 °C (c) 

Figure 6 (a) shows SEM image top-view of supercapacitor electrode (PVDF-BaTiO3) on aluminum 

foil substrate. PVDF-BaTiO3 has a uniform particle size. The porosity analysis has been done using 

previous work [41] by approximation area under the curve that density porosity is 0.70. The porous 

morphological of supercapacitor electrode can increase the capacitance of the supercapacitor [42]. 

  
Figure 6. SEM image of PVDF-BaTiO3 

The optical properties of the photoanode electrode with various layer and the annealing temperature 

were characterized using UV-Vis at a wavelength between 200-800 nm shows in Figure 7a and Figure 

8a respectively. The absorbance at semiconductor material is related to the energy used by an electron 

to excite from valence band to conduction band [43]. The direct transition of the electron is expressed 

by Equation 2 [11].  

 ( ) ( ) 2/1
EghAh −=   (2) 

where α, hυ, Eg, and A are absorbance coefficient, photon energy, band gap, and constant respectively. 

Tauc plot method was used to analyze band gap by intercept at x-axis from graph hυ vs. (αhυ)2 [44].  
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 (a)  (b) 

Figure 7. Absorbance spectra of TiO2 without compact layer ZnO (Ti 350), Compact layer ZnO (Zn 

350), and TiO2-ZnO with compact layer ZnO (ZnTi 350) on FTO substrate (a), and Tauc plot (b) 

Figure 7a represents spectral absorbance of a various layer that indicates decreasing absorbance 

coefficient at wavelength 400-800 nm. This phenomenon indicates that photon energy was used by the 

electron to excite from valence band to conduction band. The magnitude energy corresponding to the 

band gap of each semiconductor. The compact layer ZnO has Eg = 3.824 eV eV [45] and TiO2 layer 

without compact layer ZnO has Eg = 3.122 eV [46,47]. TiO2-ZnO layer with compact layer ZnO has Eg 

= 3.225 eV.  

 
 (a) (b) 
 

Figure 8.  Absorbance spectra of photoanode electrode (ZnTi) with various annealing temperature (a) 

and Tauc plot for band gap calculation (b) 

Figure 8a shows the absorbance spectral photoanode electrode of ZnTi with various annealing 

temperature. There is a shift of decreasing absorbance coefficient from wavelength 450 nm becomes 

400 nm. The annealing temperature is increased band gap of ZnTi is showed by Figure 8b. Increasing 

band gap indicate crystal growth of compact layer ZnO.  
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 (a) (b) 

Figure 9. Schematic of photocurrent measurement (a) and I-t graph of photo-supercapacitor (b) 

Current vs. elapsed time (I-t) of photo-supercapacitor was measured with the scheme is showed by 

Figure 9a under 20 mW/cm2 illumination. Figure 9b shows the photocurrent characteristic of photo-

supercapacitor (PC) with various annealing temperature 300, 350, and 400 °C is coded by PC 1, PC 2, 

and PC 3 respectively. The annealing temperature influence Isc (short-circuit current) of photo-

supercapacitor. This corresponds to the crystal growth, energy gap, and the interface between the 

substrate and metal oxides ZnO and TiO2. The compact layer ZnO increase interface between 

mesoporous TiO2 and FTO substrate that makes electron mobility and photocurrent increase [31,39,40].  

Photo-charge of photo-supercapacitor was measured with schematic is showed in Figure 10a. Current 

vs. elapsed time (I-t) at PC 3 with capacitance supercapacitor 5nF with active area 2 × 1.5 cm2 is 

represented by Figure 10b. The constant current charge supercapacitor is 0.423 A. Figure 10c shows 

photo charge and discharge of supercapacitor is showed by voltage vs. elapsed time (V-t) graph. The 

charge and discharge of supercapacitor correspond to characteristic decrease exponentially. 

Charge-discharge performance of PC 3 corresponds to the transient voltage at series RC circuit 

[48,49]. Equation 3 express charging while Equation 4 express discharge of the capacitor. Figure 11 

shows the voltage vs. elapsed time (V-t) graph and the fitting curve. Voltage maximum Vmax of 

charging supercapacitor is 40.26 mV with the time constant τ = 15.04 s and potential breakdown is 10 

mV that is larger than those in previous work [2]. This is related to the time of charge and discharge in 

photo-supercapacitor.   

 ( )
( )0

max (1 expc

t t
V t V



 −
= − − 

 
 (3) 

 ( )
( )0

max expc

t t
V t V



 −
= − 

 
 (4) 

where Vc is time-dependent capacitor voltage, Vmax is saturated voltage, t is time, and τ time constant. 
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 (a) (b) 

 

 
 (c) 

Figure 10. Schematic photocurrent and charge-discharge measurement (a), photocurrent performance 

(b), and charge-discharge (c) of photo-supercapacitor (PC 3) 

 
Figure 11. Charge-discharge and fitting curve of capacitor performance for charge and discharge 
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4.  Conclusion  

The temperature annealing affects various aspects of photo-supercapacitor performance. This annealing 

temperature increases the activation energy for crystal growth which improves the interface between the 

FTO and TiO2 mesopore. This condition increases the Eg and Isc as well as the stability of the current 

generated in the photocurrent characteristic.  
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