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Abstract. Magnetic switches working in solid states are of recent interest for applications to 

sensor, memory, etc. The author and co-workers have developed various unconventional spin 

transition/crossover materials. The first example is a supramolecular chemistry consisting of 

genuine organic nitroxide biradicals with a triplet ground state. Each nitroxide group is located 

close to each other to form weak covalent bonds in an intermolecular fashion. Biradicals are 

polymerized/depolymerized stepwise. The second example belongs to 3d-2p heterospin 

systems where the nitroxide oxygen atom is directly bonded to a nickel(II) or copper(II) ion. 

The planar/nonplanar chelate structure changes, accompanied by high-/low-spin transition due 

to a 3d-2p exchange-coupling switch. A novel entropy-driven spin crossover scenario has been 

established. The third example is a 3d iron(II) spin crossover material carrying a stearyl (C18) 

group. An order-disorder-type structural transition appears with respect to the alkyl 

conformation. As these examples show, single-crystal-to-single-crystal structural transitions 

are often observed. It is because the spin entropy term regulates the atomic dislocation enthalpy, 

and the entropy change due to the spin multiplicity is basically small. These molecular motions 

clarified by means of detailed crystallography afford one of the most convincing evidence for 

the spin transition phenomenon.  

Keywords: Spin transition, Solid-state chemistry, Exchange coupling, Heterospin, Radical 

1. Introduction 

Various magnetic switches working in solid states are of recent interest for pursuing applications to 

smart materials like sensor, memory, display, and so on [1–5]. A reversible spin transition between 

low-spin (LS) and high-spin (HS) states associated with external stimuli like heat, pressure, and light 

is called spin crossover (SCO) [1–4]. Iron(II) compounds are the most popular, because drastic 

magnetic and chromic changes are expected between S = 0 and S = 2 states from the 3d6 electron 

configuration. Bistability with a thermal hysteresis, hopefully near room temperature, is a key to 

applications under ambient conditions (Figure 1a). Spin transition behavior has so far been 

investigated in coordination compounds extensively. Organic paramagnetic species are also available 

for a spin carrier [6,7]. Furthermore, heterospin systems have an advantage in utilizing various 

symmetries and energy levels of magnetic orbitals, in the context of frontier-orbital engineering. 
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There have been a number of organic (2p) spins and related heterospin systems developed [6,7] 

because of a wide variety of derivatizations owing to sophisticated synthetic techniques. In this report 

three examples will appear, which show spin transition concomitant with notably gradual crystal 

structure transition. Paramagnetic materials are given from organic free radicals (genuine 2p spin 

systems) and coordination compounds involving paramagnetic ligands (3d-2p heterospin systems). 

The third example belongs to 3d spin iron(II) SCO systems. A main subject of this paper is to 

introduce them and discuss the magneto-structure correlation on the basis of detailed crystallographic 

analysis.  

Spin transition phenomena are regulated by the compensation of enthalpy loss and entropy gains 

[3]; LS states are favorable for the enthalpy term in a low-temperature (LT) phase, while HS states for 

the entropy term in a high-temperature (HT) phase (Figure 1b). Paramagnetic centers move in crystals 

to satisfy thermodynamic conditions, so that the intermolecular distances or intramolecular bond 

angles would change. The soft character in organic materials/crystals plays an essential role in 

accommodation of structural modification. Single-crystal-to-single-crystal structural transformation is 

very helpful to the detailed studies, and thanks to this we will witness that molecules often move and 

struggle in crystalline solids.  

 

(a) 

 

 

(b) 

 

 

Figure 1. (a) Room-temperature phase transition attracts much attention to materials 

researchers. (b) Gibbs energy diagram for LS/HS transition materials. 

2. Spin transition materials from 2p systems 
The nitroxide (aminoxyl) chromophore is ideal for the study of magnetic exchange interactions 

because of the persistency as an isolable paramagnetic species. Actually the low-lying ferromagnetic 

state has been well established with pioneering works on m-phenylene-bridged bis-, tris-, and oligo-

nitroxides [7–10]. Organic HS molecules are realized under certain conditions when nonbonding 

molecular orbitals are available. There have been many reports on the theory and experiments about 

biradicals and dicarbenes [7]. The mechanism on -topological degeneracy has been explained in 

terms of the Kekulé/non-Kekulé classification, spin-polarization scheme, star/non-star rule, or 

disjoint/non-disjoint MO theorem [7,11,12]. These logics have originally been proposed for 

hydrocarbon systems like p- and m-quinodimethanes, but they also hold for systems involving 

nitroxide spin centers [10], as illustrated with Scheme 1. A simple and typical explanation for p- and 

m-phenylene bis(nitroxides) is as follows: A Kekulé structure can be drawn for the former (Scheme 

1a), leading to a diamagnetic character. In contrast, a biradical character remains in any canonical 

structural formulas for the m-phenylene isomer (Scheme 1b). Hund’s rule is operative in the latter, 

affording a biradical nature with the triplet state stabilized. In fact, strong intramolecular ferromagnetic 

coupling gave a wide energy-gap of singlet and triplet states typically for m-phenylene bis(nitroxides) 

[13] and heteroaromatic 1,3-diyl bis(nitroxides) [14–16]. Characteristic decomposition reactions have 

also been reported owing to the considerable spin density delocalized on the adjacent aromatic ring 

[17–19].  
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(a)  (b) 

  

Scheme 1. Canonical structures of (a) p- and (b) m-phenylene-bridged bisnitroxides. 

 

Based on the successful results on such prototypes, author’s group moved on to supramolecular 

chemistry with the ground HS molecules as a starting material. In the present study, several 

derivatives of BPBN (biphenyl-3,5-diyl bis(tert-butyl nitroxide); Scheme 2) were synthesized [20–24]. 

Methyl groups and fluorine atoms were substituted at the 2,5-positions on the outer phenyl ring. The 

Suzuki cross-coupling reaction [25] is a key step, where a variety of commercially available aryl 

boronic acids are coupled with an important synthetic intermediate, 1-bromo-3,5-bis(N-tert-

butylhydroxylamino)benzene. It is very helpful for synthetic chemists that unprotected hydroxylamino 

groups did not poison the Suzuki coupling catalyst.  

 

 

Scheme 2. Synthesis of BPBN derivatives. 

 
The magnetic susceptibilities of polycrystalline BPBN derivatives were measured on a SQUID 

susceptometer in a typical temperature scan range 1.8 – 360 K (Figure 2). The mT(T) profiles of -

BPBN [21] and -25MeBPBN [22] showed 0.95 cm3 K mol-1 as the HT limit, being close to the 

theoretical triplet value of 1.00 cm3 K mol-1. Compounds BPBN and 25MeBPBN can afford room-

temperature triplet molecular solids. This finding implies that the intramolecular exchange coupling 

exceeds the order of a thermal energy around 300 K. Measurements on lowering temperature 

displayed a monotonic mT decrease, being assignable to intermolecular antiferromagnetic interaction. 

In short, the spin structure is depicted as …↑↑…↓↓…↑↑…↓↓….  

Another morph was found for BPBN and 25MeBPBN, which was structurally and magnetically 

characterized and named as the -phase. The mT values were null below ca. 350 K for -BPBN [21] 

and -25MeBPBN [22], indicating complete loss of spins. The biradical revived in solution, as 

clarified by means of EPR spectroscopy. A solution SQUID magnetometry confirmed the triplet 

ground state of each molecule. On heating the polycrystalline specimens of -BPBN and -

25MeBPBN, the mT values showed an abrupt jump to 0.95 cm3 K mol-1. The transition temperatures 

are 350 and 360 K, respectively. The transitions were irreversible, as shown in measurements with 

repeated thermal cycles. The powder XRD study clarified that this transition did not involve melt but 

solid-state/solid-state structural transition. The single-crystal structural analysis indicates that the - 

and -phases can be regarded as polymerized and depolymerized forms, respectively (see below).  
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Figure 2. Magnetic study results on BPBN derivatives. 

 

A half level of the mT value (ca. 0.40 cm3 K mol-1) was recorded for 3FBPBN [23], being close to 

the theoretical level typical of S = 1/2 species (0.38 cm3 K mol-1) (Figure 2). As the crystallographic 

analysis of 3FBPBN clarified (see below), one hand participates in dimerization while the other 

remains free. As a result, two residual spins come from every four spins.  

The mT vs T curve of 3MeBPBN [24] (Figure 2) displayed a gradual spin transition. A practically 

diamagnetic feature appeared in the LT phase. On heating, the mT value started a monotonic increase 

from ca. 230 K and reached to an approximate plateau at 0.35 cm3 K mol-1 around 300 K in the HT 

phase, which corresponds to the theoretical S = 1/2 value. The interconversion was reversible. 

Thermochromism was also observed; the LS and HS phases are orange and red, respectively.  

More interestingly, a reversible, abrupt and hysteretic spin transition was found at TC↑ = 182 K on 

heating and TC↓ = 181 K on cooling for 25FBPBN [23] (Figure 2). The transition was completed in a 

width of ca. 3 K. In the HT phase, the mT value is close to the S = 1/2 theoretical value, just like 

3FBPBN. Most interestingly, a quarter level of the total spin amount (mT = ca. 0.20 cm3 K mol-1) was 

recorded in the LT phase. 

 

(a)  

 
(b) 

 

Scheme 3. (a) Equilibrium of covalent-bond/radical-pair forms. (b) Three 

phases of a linear array: polymer (left), dimer (center), and monomer 

(right) on the BPBN-molecular basis.  
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(a) 

 

 

(b) 

 

 

Figure 3. Crystal structures of 3MeBPBN at 116 K (a) and 296 K (b). Hydrogen atoms are 

omitted for clarity. Moving groups are marked with small arrows, and short contacts with 

dotted lines. Molecules are linearly arrayed in a crystallographic b + c diagonal direction. The 

intermolecular N1…O1’ distances are 2.379(2) and 3.686(3) Å at 116 and 296 K, respectively.  

 

Detailed crystallographic analysis perfectly explains all the magnetic properties. The molecules are 

linearly arrayed with each nitroxide group closely interacted in an intermolecular fashion (Scheme 3). 

The intramolecular ferromagnetic and intermolecular antiferromagnetic couplings are simultaneously 

present and competing in a chain-like molecular arrangement. Figure 3 shows the result on 3MeBPBN 

[24]. The intermolecular interaction is overwhelmingly stronger than the intramolecular interaction in 

the LT phase. The crystallographic inversion center of the P  space group is located at the midpoint of 

a head-to-tail (N-O)2 motif (Scheme 3a). Such a dimerization mode is reasonable from the canonical 

dipolar structure >N+•-O–, and similar arrangements have been well known [26–28]. The peroxide-type 

O-O bond is rather rare [29], in good agreement with the thermodynamic consideration [30,31]. The 

N-O radical groups are separated from each other by 2.3 - 2.4 Å for O…N at 116 K, being 

considerably shorter than the sum of the van der Waals radii (O/N: 3.07 Å [32]). Therefore, the 

molecular structure can be well described as a diamagnetic phase or covalent polymer (Scheme 3b, 

left). At 296 K (Figure 3b), the O1…N1 separation becomes further whereas the O2…N2 proximity 

still remains. According to the classification of the phases, the resultant linear array belongs to the 

intermediate paramagnetic form (Scheme 3b, center). Transient structures could be tracked at any 

temperature, and the result of the variable-temperature crystallographic study has been deposited as an 

animated picture file at the electronic supporting information (ESI) site [24]. A very gradual structure 

transition was recorded.  

Note that the present spin transition could not be analyzed according to the conventional spin 

equilibrium such as a singlet-triplet (Bleaney-Bowers) model [33]. During the transition, the atoms are 

dislocated, the molecules are deformed, and the exchange coupling is not constant. In other words, this 

situation is best described as a solid-state reaction. A chemical equilibrium occurs between covalent 

bond and radical-pair forms.  

 

1
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(a) 

 

 

(b) 

 

 

 

 

 

Figure 4. Crystal structures of 25FBPBN at 100 K (a) and 296 K (b). Hydrogen atoms are 

omitted for clarity. Moving groups are marked with small arrows. The intermolecular N1…O1ii 

distances are 2.425(4) and 3.696(4) Å at 100 and 296 K, respectively. Molecules are linearly 

arrayed in a crystallographic b + c diagonal direction.  

 
The crystallographic analysis on 25FBPBN [23] (Figure 4) clarifies that 3/4 of spins (N1-O1, N2-

O2, and N4-O4) are strongly dimerized at 100 K whereas 1/2 of spins (N2-O2) is dimerized at 296 K, 

just like the HT phase of 3MeBPBN (Figure 3b). The HT form corresponds to the intermediate phase 

in Scheme 3b. The chains are differentiated on lowering temperature. Across TC one chain became a 

diamagnetic polymer (Scheme 3b, left), while the other maintained the intermediate structure (Scheme 

3b, center). In short, the asymmetric cell is doubled in the LT phase. Two spins survive from every 

eight spins. Transient structures could be monitored, and the result of the variable-temperature 

crystallography has been deposited as an animated picture file at the ESI site [23].  

The crystal structures are classified into a few phases on the basis of the paramagnetic properties or 

the amount of paramagnetic portions. The HT phase of 3MeBPBN (Figure 3b) is isomorphous to that 

of 3FBPBN and also to that of the HT phase of 25FBPBN. The LT phase of 3MeBPBN (Figure 3a) is 

isomorphous to those of -BPBN and -25MeBPBN.   

An abrupt and hysteretic character of spin transition attracts attention toward future application. 

Since 25FBPBN displayed a thermal hysteresis, this transition is described as a first-order phase 

transition. A single-crystal-to-single-crystal transition was still realized here. The relatively small 

enthalpy change may allow gradual dislocation of moving groups in 25FBPBN. The long-range 

interaction doubling the unit cell seems to be responsible for the cooperativity [34] as well as the 

structural phase transition as a bulk phenomenon.  

One may wonder possibility of the radical dimerization in solution. Preorganization generally 

reduces the entropy loss during dimerization. Actually we designed and attempted to prepare pincer-

type bisnitroxide compounds, in which the paramagnetic centers are forced to be closely located in a 

molecule [35]. This technique has been applied to triphenylimidazolyl compounds, and thermo-/ 

photochromism has been successfully demonstrated [36,37].   

In summary, the solid BPBN family affords a rare opportunity, where boundary zones are 

observable between chemical equilibrium and phase transition and between strong antiferromagnetic 

coupling and weak chemical bonding.  

3. Spin transition materials from 3d-2p heterospin systems 
Frontier-orbital engineering is a versatile concept for materials science. Heterospin approaches utilize 

the wide diversity of the characteristic features including the symmetry and energy level of magnetic 

orbitals [38]. The metal-radical approach afforded fruitful results [39]. In particular, a paramagnetic 
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center – typically nitroxide – oxygen atom is directly bonded to a metal center, leading to considerably 

strong exchange coupling.  

Copper(II)- and nickel(II)-radical complexes are best described in the 3d-2p-bonded heterospin 

compounds [40,41]. Axial coordination in Cu2+-nitroxide complexes is known to exhibit relatively 

weak ferromagnetic interaction, whereas equatorial coordination results in strong antiferromagnetic 

interaction [39]. However, from more recent related studies, ferromagnetic interaction is available as 

well from equatorial coordination (Figure 5) [40–46]. The magnitudes of the exchange couplings often 

are higher than the order of a thermal energy around 300 K, whether antiferro- or ferromagnetic. The 

author and co-workers have proposed the torsion angle  around M-O-N-C as a convenient and 

useful metric to evaluate the planarity of the coordination structure and furthermore orthogonality of 

the magnetic orbitals [47,48]. There has been no report on the magneto-structure relationship on 3d-2p 

heterospin coordination compounds before the present project.  

When the coordination structure is coplanar between the metal coordination plane and radical -

conjugation plane (i.e., || is small), ferromagnetic coupling is dominant. Five-membered chelate rings 

are more favorable for planar coordination structure than six-membered ones. Thus, 2-pyridyl 

nitroxide derivatives are supposed to be promising [14–16,45–51]. Ferromagnetic coupling is afforded 

when two magnetic orbitals (* and d) are arranged in a strictly orthogonal manner (Figure 6a,c). In 

contrast, severe twist deformation around the coordination bond brings about an appreciable overlap 

between the magnetic orbitals, giving antiferromagnetic coupling (Figure 6b,d). The critical ||, at 

which the sign of the metal-radical exchange coupling changes from positive to negative, is 12.5(8)° 

[47,48]. After the data on the Cu2+ and Ni2+ complexes are separated, the critical angle for Ni2+ 

complexes was refined to be 21(1)° from the linear fit or 26(3)° from the cos2 fit [52]. The plot of 

exchange coupling vs torsion is also competently utilized to 4f-2p heterospin systems afterward [53–

56].  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 5. Plot of the exchange coupling 

parameter (J) vs M-O-N-C torsion angle (||) 

in the Cu2+ and Ni2+ complexes with 

paramagnetic ligands. Inset shows a schematic 

drawing of  defined along atoms 1-2-3-4.  

Figure 6. Mutual geometries between 

Ni2+ (or Cu2+) 3dx2-y2 and Onitroxide 2pz (a,b) 

and between Ni 3dz2 and Onitroxide 2pz 

(c,d). 

 
Now, upon these backgrounds, the author describes here a heterospin 2p-3d-2p triad [M(L)2X2] 

showing a novel SCO behavior. Actually, a series of [Ni(phpyNO)2X2] was prepared (phpyNO = tert-

butyl 5-phenyl-2-pyridyl nitroxide [47]) (Scheme 4). After complex formation, the stability under 

ambient conditions is much improved. Analogues with X = Cl and Br displayed SCO, and those with 

X = NCO, NCS, and NCSe an indication of SCO  [57,58]. The following description is focused on the 

X = Cl derivative [57].  
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Scheme 4. Synthetic route to double 

chelates from 2-pyridyl nitroxides. 

 Figure 7. Temperature dependence of mT 

for [Ni(phpyNO)2Cl2]. Temperature scan 

sequence is also indicated.  

 

As the magnetic susceptibility measurements clarify (Figure 7), the mT value of [Ni(phpyNO)2Cl2] 

was 2.14 cm3 K mol–1 and still showed a slope at 400 K. An estimated high-temperature value is 

2.38(2) cm3 K mol–1, being larger than the paramagnetic (noninteracting) limit. This finding implies 

that the ferromagnetic coupling is observable even at room temperature. The spin structure is drawn as 

↑-↑↑-↑. With a decrease of temperature, the mT value exhibited a monotonic and dramatic decrease, 

indicating the presence of notable antiferromagnetic interaction. The spin structure becomes ↓-↑↑-↓. 

Therefore, the present compound underwent a spin switch between the ground states of Stotal = 2 and 0. 

No thermal hysteresis was recorded. 

From the crystallographic analysis on [Ni(phpyNO)2Cl2], the Ni2+ ion forms an octahedral 

geometry, guaranteeing the HS Ni2+ ion (SNi2+ = 1). Two nitroxide groups are arranged in a cis position. 

On cooling to 85 K, the space group P21/c was unchanged, and the Ni-O1, Ni-O2, and other 

interatomic distances were practically unchanged either. In contrast, both Ni-O-N-C(2py) torsion 

angles drastically increased, as shown in Figure 8. They seem to go across the critical ||. The 

breakdown of the d-* orthogonal arrangement leads to antiferromagnetic interaction on cooling. An 

animated picture file has been deposited with ESI [57], visualizing a very gradual bond twisting.  

 

(a) 

 

 

(b) 

 

 

Figure 8. X-ray crystal structures of [Ni(phpyNO)2Cl2] measured at 85 K (a) and 

400 K (b). Ni-O-N-C(2py) torsion angles are indicated. 

 
From the thermodynamic point of view, the magnetic data were found to perfectly obey the van’t 

Hoff equation (Figure 7), which has been proposed to comprehend SCO behavior [34]. The entropy 

change of the phase transition was calculated to be S = 26.3(1) J K–1 mol–1 from the equation G = 
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H – TS = 0. The entropy gain due to the spin multiplicity is R ln 5 = 13.4 J K–1 mol–1. An additional 

entropy change is suggested, and the HT form is supposed to include other degrees of freedom such as 

vibration [3,34]. A single-crystal-to-single-crystal structural transition was realized. It is because the 

spin entropy term regulates the atomic dislocation enthalpy, and the entropy change due to the spin 

multiplicity is basically small. Thus, the thermodynamic consideration is entirely consistent with the 

magnetic and structural discussion. The two Ni-O-N-C(2py) twists are synchronized. Both interactions 

change from ferromagnetic to antiferromagnetic with a decrease of temperature, because the spin 

multiplicity should be minimized (Stotal = 0).  

 

 

(a) 

 

(b) 

 

Figure 9. mT vs T plot for 

[Cu(phpyNO)2(H2O)2](BF4)2. 

 
 

Figure 10. Molecular arrangements at 94 K (a) and 204 

K (b) for [Cu(phpyNO)2(H2O)2](BF4)2. Counter anions 

and hydrogen atoms are omitted. The space groups are 

P212121 and C2221 at 94 and 204 K, respectively. 

 
The results on the corresponding copper(II) complexes confirm this notion. Applying a copper(II) 

ion source to a general synthesis (Scheme 4) gave a complex salt [CuII(phpyNO)2(H2O)2](BF4)2 [59]. 

In a HT region, the magnetic study clarifies the presence of the ferromagnetic coupling on both sides 

(Figure 9); namely, the spin structure was drawn as ↑-↑-↑ to give Stotal = 3/2. In a LT region, the mT 

value indicates Stotal = 1/2. The ground Stotal = 1/2 state is given, regardless of antiferromagnetic 

interaction operative on either side or both. The crystallographic analysis reveals that the exchange 

switch took place around 175 K only on one side (Figure 10). A chelate ring underwent out-of-plane 

deformation, leading to loss of a molecular/crystalline symmetry element. Thus, the spin structure is 

written as ↑-↑-↓ and not ↑-↓-↑. No synchronous switch is necessary in this case. Despite the sharp mT 

drop with a decrease of temperature, the specimen retained a single-crystalline form. An animated 

picture file has been deposited with ESI [59].  

 

 

(a) 

 

 

(b) 

 

 

Figure 11. mT vs T plot for 

[Cu2+(2pyNO•)(2pyNO–)]2(BF4
–)2. 

Figure 12. Molecular structures at 50 K (a) and 

300 K (b) for [Cu2+(2pyNO•)(2pyNO–)]2(BF4
–)2. 

Counter anions and hydrogen atoms are omitted. 
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Another complex has been investigated with a M/L(radical) ratio of 1/1. Applying 2pyNO and the 

corresponding diamagnetic hydroxylamine to copper(II) complex formation with a molar ratio 1/1/1, 

[Cu2+(2pyNO•)(2pyNO–)]2(BF4
–)2 was obtained [60]. The anionic oxygen atom bridges a nearest Cu2+ 

ion at the axial position. Although a four-centered system was formed, the magnetic system can 

approximately be regarded as a two-centered system. As Figure 11 shows, a relatively abrupt spin 

transition occurs at 64 K; the spin structures are drawn as ↑-↑ for the HT phase and ↑-↓ for the LT 

phase for all the paramagnetic portions. In this case, to achieve the LS state as a whole molecule, all 

the chelate rings are synchronously deformed (Figure 12).  

After combining the results on the above Ni2+- and Cu2+-nitroxide complexes, it can be concluded 

that the SCO is entropy-driven, i.e., driven under the control of the spin entropy. The spin triads or 

dyads exhibited a thermally induced SCO on the whole heterospin molecular basis, in which the 

exchange coupling is converted between ferro- and antiferromagnetic. Owing to the slight molecular 

motion like inner conformational change, the single-crystal nature was kept during the transition. As 

seen in several complexes described above, such novel SCO materials are not so rare in multi-centered 

3d-2p heterospin compounds. The present work expands a concept of SCO and will open potential 

application taking advantage of possible wide derivatization of organic and counterion portions. 

As a closely related system, the following study should be referred. Ovcharenko et al. reported the 

spin-transition materials in Cu2+-nitroxide complexes [61,62]. This mechanism involves a switch of 

the role of axial and equatorial coordination sites and works only for Cu2+ systems. In contrast, 

author’s group focused on octahedral Ni2+ complexes as well, in which a coupling switch actually 

occurred regardless of the coordination positions. In other words, the mechanism proposed here may 

be broadly applied to complexes carrying d spins. Another advantage of the present system is the 

inclusion of room-temperature-class strong ferromagnetic coupling in the HT structure. 

4. Spin transition materials from 3d systems 
Multifunctional SCO substances toward future application attract much attention to materials 

chemists; for example, SCO with magnetic exchange coupling [63–65] and with mesophase or liquid 

crystal properties seems to be fascinating [66–71]. Iron(II) (3d6) complexes are supposed to be the 

most important family of SCO compounds. HS states tend to have longer metal-ligand bonds than LS 

states [1–4], and this inevitably means that the molecular and crystal structures are deformed during 

SCO. Thus, the detailed SCO study has often clarified various phase transition modes like stepwise, 

hysteretic, incomplete, etc., which might be overlooked only from the viewpoint of the structural 

chemistry. Symmetry-breaking SCO has often been characterized with the stepwise thermal hysteresis 

[68,72]. 

 

 

 

 

Scheme 5. Synthetic route to 

Me4N[Fe(LC18)(NCS)3]. 

 Figure 13. Temperature dependence of mT 

for Me4N[Fe(LC18)(NCS)3], measured on 

heating and then cooling. 
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In this work a stearyl-substituted ligand (abbreviated as LC18) has been designed as a polymorphic 

SCO ligand prototype. The target compound, Me4N[Fe(LC18)(NCS)3] [73], was synthesized according 

to Scheme 5. The specimen possesses no solvent molecule. It seems to be noticeable that anionic SCO 

complex ions [Fe(LX)(NCS)3]– (X = H, CH3, OH, 2-pyridyl, OCH3) are uncommon [74–79]. The 

magnetic susceptibility of Me4N[Fe(LC18)(NCS)3] was measured up to 400 K, and the S = 0 ⇄ 2 SCO 

occurred in a one-step and nonhysteretic manner, as Figure 13 demonstrates.  

The X-ray crystallographic analysis on Me4N[Fe(LC18)(NCS)3] was performed between 100 and 

300 K; these temperatures correspond to just below and above the SCO range (Figure 14). A layered 

structure is constructed with the layer distance of 30.5 Å. A gauche conformation is found at the fourth 

single bond in the chain, and all other carbon atoms are arranged in anti zigzag conformation. At 300 

K, the space group is P21/c with Z = 4, and there is a crystallographically unique ion pair Me4N+ 

[Fe(LC18)(NCS)3]– in a unit cell  (Figure 14b). At 100 K, the crystal symmetry was lowered to give a 

space group P  with Z = 4, and there are two independent units (Figure 14a). The torsion angles 

around the fourth single bond in the chain are differentiated to be 58.8(7) and 63.7(7)°.  

However, interestingly, the two conformers synchronously underwent SCO, as clarified with the X-

ray structural analysis on transient crystals. It seems to be a very rare case, where the SCO profile is 

gradual, one-step, and nonhysteretic, despite the change in the crystal system and space group 

[68,72,80–84]. The gauche conformation appears for minimization of the crystal void space. In this 

context, to maintain a commensurate bilayer structure, the gauche angle is deviated. Accordingly, the 

SCO is supposed to cause the structural change. 

 

 

 

 

 

 

 

Figure 14. X-ray crystal structures of Me4N[Fe(LC18)(NCS)3] measured at 100 K (a) and 300 K (b). 

Crystallographically independent molecules are colored by symmetry equivalence.  

 

In summary, Me4N[Fe(LC18)(NCS)3] underwent SCO with a considerably gradual order-disorder-

type structural transition. The transition temperature range is as wide as ca. 200 K. An organic flexible 

group was elaborately introduced, and the polymorphic transition is successfully materialized.   

5. Conclusion 
The three types of spin transition materials consisting of 2p spin, 3d-2p heterospin, and 3d spin 

systems have been described, and the corresponding magneto-structure relationships have been 

discussed in detail on the basis of the molecular deformation observed. In fact, we encounter 

molecular motion in crystalline solids more frequently than expected! Such molecular motion can be 

monitored by means of attentive crystallographic study, thus affording one of the most convincing 

evidence for the spin transition phenomenon. As seen above, author’s group has developed various 

unconventional spin transition materials.  

The molecules and crystals are gradually transformed in a wide temperature range, and the present 

solid-state/solid-state structural transition – or more correctly, structure crossover – involves only a 

small geometrical change. A single-crystal-to-single-crystal structural transformation would be 

1

(a) (b) 
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welcomed for crystallographic study, and such favorable conditions are often realized. It is inevitable 

rather than accidental. It is because paramagnetic centers move in crystals to satisfy thermodynamic 

conditions.  The spin entropy term regulates the enthalpy term leading to minimal atomic dislocation, 

i.e., T1/2trS =trH, and the entropy change due to the spin multiplicity is basically small.   

Since the molecules are transformed through solid-state chemical reactions, intersystem crossing, 

and/or conformational isomerization, the physical properties must concomitantly change, including 

conductivity, dielectricity, elasticity, chromism as well as magnetism. Among the vast variation of 

SCO compounds, there are instances showing an abrupt transition and sometimes thermal hysteresis 

(Figures 2, 9, 11), being suitable for future application to smart devices. Application-oriented research 

is a next challenge.   
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