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Abstract. Detection of damage at early stage is necessary to prevent catastrophic collapse of 

civil structure. The quantification of small damage has however, not received the much needed 

attention from researchers. Amongst various non-destructive methods studied by researchers to 

identify structural defects are Wavelet Transform (WT) and Artificial Neural Network (ANN). 

In this paper, a technique is proposed to quantify damage by combining WT and ANN.  The 

study is divided into two phases. The first phase involves detection and location of damage in a 

plate numerical model by WT decomposition of the mode shape difference. Due to difficulties 

in obtaining higher mode shapes in practice, the difference of the first mode shapes of the 

damaged and undamaged plates are applied. After obtaining the damage location, the 

coordinates of the damage location and the mean values of the obtained WT moduli are applied 

as input to the designed neural network. The output of the ANN is the severity of damage in 

the plate model. This method is demonstrated by using a numerical square steel model with all 

the four sides fixed. The results indicate the ease of the method and that reliable damage 

identification can be obtained by combining ANN and WT.  

1. Introduction 

Civil structures are the major assets of any nation. The health status of these structures are paramount 

to safety of lives and properties, as well as rising cost of maintenance. The health status of structures 

can be improved by early detection of damage. Such detection has gained attention of researchers over 

the past two decades. Researchers have applied different vibration-based damage detection methods 

such as change in frequency [1], mode shape [2], frequency response function (FRF) [3], modal 

curvature [4] and artificial neural network (ANN) [5] to identify and assess defects in different civil 

structures.  

In applying WT to detecting damage, Garstecki et al. [6] applied dynamic and static numerical 

models to detect defects in structures by using discrete wavelet. Spanos et al. [7] identified crack 

damage in beams by establishing a WT modulus map. The WT modulus map had the boundary 

distortion eliminated and the local maxima due to damage were easily identified. Their technique was 

verified by employing pseudo-experimental and numerical test of beams with cracks up to three. Wu 

and Wang [8] applied Gabor wavelet to detect cracks of different depths in an aluminum cantilever 

beam. Static displacement was imposed on the structure and laser sensors were used to measure the 

deflection profile that was then decomposed. Rucka [9] examined the effects of higher modes in 
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damage detection. The WT technique considered Gaussian wavelets Gaus4, Gaus6, and Gaus8 and a 

cantilever beam by imposing varying depth rectangular notches at different locations. Cao et al. [10] 

employed a WT method to deal with measurement noise in modal curvature from mode shapes. A 

Teager energy operator was applied to analyse the modal curvature to produce Teager energy 

operator-WT modal curvature that has distinct suppressing noise capabilities, thus boosting the main 

feature caused by damage. The technique was validated using an experimental test consisting mode 

shapes acquired from a damaged aluminum beam obtained by a scanning laser vibrometer. Montanari 

et al. [11] proposed a spatial Continuous Wavelet Transform (CWT) damage identification method to 

determine the minimum number of sampling intervals required for optimal damage detection. In 

achieving this, the first three free vibration modes of a cantilever and a simple supported beam with an 

edge open crack were numerically simulated. In addition, the authors carried out a parametric analysis 

by considering the main parameters governing the problem.  

More studies were done applying WT when Douka et al. [12] applied continuous wavelet transform 

(CWT) to detect crack damage in a plate by analyzing the plate’s mode shapes. Law et al. [13] 

proposed a WT technique to for assessing noise by analyzing the structure’s acceleration response. 

Even though the technique was able to detect local damage by taking measurements at few points, the 

technique showed flaws due to its sensitivity to modelling error and measurement noise. In the works 

of Sarrafi and Mao [14], a probabilistic WT method was applied to quantify uncertainty by using WT 

coefficients, and using outlier analysis to obtain the optimal detection threshold. Recently, 

Abdulkareem et al. [15] proposed a non-probabilistic WT technique to detect damage in plate 

structures. The WT coefficient values of the decomposed damaged and undamaged mode shape 

structures are obtained. Thereafter, interval analysis method was utilised to identify the position of 

damage. 

A review of previous studies reveals that existing WT-based damage detection techniques are 

unable to detect and quantify of damage simultaneously. Although a few WT-based techniques tried to 

quantify damage [16], they have only been successful in estimating the damage to the overall structure 

[17]. On the other hand, ANN has the ability to recognize linear and non-linear relationships between 

two variables. It is the most explored artificial intelligent approach in vibration-based damage 

detection [18]. Another advantage is that it possesses noise filtering ability and can be trained with 

incomplete data. 

One of the pioneers ANN applications in structural damage detection was done by Wu et al. [19]. 

The authors applied the FRF data of a numerical three-storey structure to identify damage that was 

initiated by reduction of stiffness of the columns. Although damage was accurately identified when the 

ANN input data were from the third floor, the results were flawed when the ANN was fed with 

measurements taken from the second floor and third floor. Sahin and Shenoi [20] applied different 

structural parameters as input to an ANN. The first three frequencies changes, maximum absolute 

difference in mode shape curvature, absolute difference in mode shape curvature and their 

corresponding damage locations as input vector of the neural network. The results indicated that the 

absolute difference in mode shape curvature provided the best result for damage identification. 

However, change in frequencies neither predicted damage location nor damage severity. Yam et al. 

[21] proposed a neuro-wavelet method to detect damage in composite structures. The energy 

variations of the structural responses were decomposed and damage features extracted were applied to 

train the neural network. The proposed method accurately located all the damage cases, however, few 

incorrect predictions were observed in the experimental study.  

In addition, Lee et al. [22] utilised a simple beam and a multi-span bridge to compare results 

obtained by training an ANN with inputs of mode shapes, their ratios and their differences. They 

concluded that mode shape differences and mode shape ratios provided good results. Rucka and Wilde 

[23] applied ANN to identify damage in plate and shell structures by using the decomposed mode 

shape signals. Bagchi et al. [24] successfully obtained damage data of a bridge structure by employing 

ANN and modal parameters. The location of damage was identified first by using the natural 

frequencies and mode shapes, and subsequently using ANN to obtain the damage severity. Li et al. 
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[25] presented an ANN technique by using details of the residual FRF as input. The FRF was reduced 

by using principal component analysis (PCA) to obtain damage features that were applied to train 

different neural networks. They further applied an ensemble neural network to fuse the outcome of 

each neural network. It was shown that the network ensemble provided better results than the 

individual neural networks. Hakim et al. [26] applied ANN to detect damage in an I-beam by using 

natural frequencies and mode shapes as inputs. Recently, Khoshnoudian et al. [27] fed damage 

features from FRF extracted by using 2D PCA into a neural network to identify damage in truss 

bridge. In addition to using these methods, researchers have combined them with other methods to 

identify damage in structures. The combination of methods allows complementing of drawbacks of 

methods. Dackermann et al. [28] utilized ANN and FRF methods to identify defects on a frame 

structure. The efficiency of the technique showed that the bearable limit of uncertainty was 10%. This 

work was furthered by Fallahian et al. [29] when they added PCA and replaced the ANN with deep 

neural network (DNN). The effects of the uncertainties caused by temperature change on the 

undamaged structures were reduced by DNN. The PCA reduced the FRF to a defined pattern, while 

using temperature as the input to the DNN. These studies have shown that identification of structural 

damage is more feasible by combining other methods with ANN. 

This study aims at proposing a damage detection method to detect, locate and quantify damage by 

combining WT and ANN. The proposed neuro-wavelet technique is to identify small damage in a steel 

plate structure. The plate structure is inflicted with damage at different locations. The proposed 

method involves applying WT to decompose the mode shape difference to detect and locate damage in 

the plate structure. Lee et al. [22] showed that the sensitivity of mode shape differences to modelling 

error is less compared to mode shapes due to the baseline finite element model and the accuracy of the 

finite element model greatly influences the effectiveness of damage detection algorithms. In addition, 

the training data applied in ANNs are mostly obtained from finite element models, this property makes 

mode shape differences a perfect input vector for training neural networks. Upon damage localization, 

the mean value of the WT moduli of the decomposed signal and the coordinates of the located damage 

are applied to train the neural network to predict damage severity. 

 

2.   Procedure of the neuro-wavelet technique  

In the proposed method, data (mode shape) from the modal analysis of plate model in the damaged 

and undamaged states are used. This is facilitated by numerical data generated from a finite element 

model that enables collection of sufficient data needed to train the neural network. The plate structure 

is square and made of steel, and all the side boundaries are fixed. The proposed method is designed to 

be able to provide information on the three levels of damage identification, namely, detect presence of 

damage, detect location of damage and detect severity of damage. The 1st two levels are accomplished 

by using WT, while the third was achieved by using features extracted from the first WT and damage 

located coordinates. 

Continuous wavelet transform (CWT) is the WT applied to decompose the mode shape difference. 

Unlike Fourier transform that is only localized in frequency, WF is localized in both frequency and 

time [30]. WT examines local data (e.g., displacement), thus it is able to detect and locate local 

damage; it also performs excellently in the presence of noise. The major problem of WT is selection of 

the most appropriate mother wavelet. The best option usually requires trial and error simulations. 

Decomposition of the mode shape difference provides information on damage detection and location. 

The coordinates of detected damage and mean value of the WT moduli serve as input to the neural 

network to predict damage severity. The procedure of damage severity prediction in the plate structure 

consists of the following stages: 

1. Find the mode shapes of the monitored structures. 

2. Evaluate the mode shape difference of the first mode. 

3. Calculate the WT moduli of the first mode shape difference to locate damage. 

4. Feed the mean value of WT moduli and detected damage coordinates to the ANN system. 

5. Evaluate the output regarding damage severity (severity ranges from 0 to 1). 
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3.   Continuous wavelet transform  

A mother wavelet function ψ(x) creates a wavelet family ψu,s(x).  
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where s and u are scale and position, respectively. 

The deflection of the plate as a one-dimensional signal f(x), the CWT defined by Mallat [31] is:  
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where   (   ) is wavelet coefficient of the wavelet     ( ). The n vanishing moment of a wavelet is 

vital in detecting singularity of signals, which is based on the equation:  
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Rewriting the above equation gives:  
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Re-writing as the nth order derivation of a smooth function  ( ) [25]:  
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where    ̅  is convolution. In two-dimensional CWT, the function f(x, y) is given by Rucka and 

Wilde [32] as:  
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The horizontal   (   ) and vertical   (   ) wavelets are constructed with separable products of 

scaling Ø and wavelet function ψ :  

  (   )    ( ) ( )   (   )    ( ) ( )    (8) 

 

4.   Numerical plate model  

The plate model applied in this study is a square steel plate. The dimensions of the steel plate model 

are: 560mm length, 560mm width and 2mm thickness, and the material properties are: Young 

Modulus E = 200Gpa, Poisson’s ratio ν = 0.3 and steel density ρ = 7850kg/m
3
. The four sides of the 

plate are fixed. The plate is modelled by using Finite Element Analysis (FEA) program SAP2000 into 

672 plate elements of size 20mm x 20mm elements, and the modal parameters (mode shape and 

frequencies) are obtained. To demonstrate damage detection of WT, three locations (middle, side and 

top of the plate) of damage are applied in this section. These locations are shown in Figure 1. The 

three damage locations are simulated by reducing the plate’s thickness at the specified area. The 

damages are in rectangular shape with the dimension of 40mm x 40mm which represents 

approximately 0.005% of the plate’s area. Figure 2 shows a cross-section of the plate with a middle 

damage. 

The mode shape difference of the damaged and undamaged states is generated by subtracting the 

displacement value at each node in the first mode shape. Figure 3 shows the first mode shape of the 

undamaged plate model. The obtained mode shape differences are analyzed with CWT to obtain the 

damage locations. To accurately determine the damage location, appropriate mother wavelet needs to 

be chosen in decomposing the mode shape differences. Paul mother wavelet is chosen after several 

trials and errors [33]. Figure 4 shows the locations of the detected damage for the three damage 

locations. The coordinates of the damage are included in Figure 4, and these coordinates and the mean 

wavelet coefficients serve as input into the neural network. 
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Figure 1. Damage locations: (a) middle; (b) side; (c) corner. 

 

     
Figure 2. Damage section of plate.   Figure 3. First mode of the plate model. 

 

 

 
(a) Middle damage.   (b) Side damage. 

 

 
(c) Top damage. 

Figure 4. Wavelet coefficient showing detected damage location in the plate model. 

 

5.   Artificial neural network  

5.1. Architecture of neural network  

The architecture of the ANN consists of two hidden and one output layers. Each of the hidden layers 

consists of 20 neurons. Figure 5 shows a typical architecture of a neural network model. The optimum 

number of hidden layers and the required neurons were estimated by applying trial and error. The 

input layer has 3 nodes that correspond to the mean value of WT moduli and the x- and y-axes of the 

detected damage. Levenberg–Marquardt (LM) backpropagation algorithm was applied for training the 

ANN. The neurons in the ANN are taken to be fully connected and sigmoid function was selected as 
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the activation function for all hidden layers. The output layer was assigned the linear activation 

function. To prevent the overcrowding of the ANN, the input and output values were trimmed to 

between -1 and +1.  

 

 
Figure 5. Typical architecture of an ANN model. 

5.2. Training of neural network  

The training of the neural network is done by using noise-free numerical data. The damage locations 

and damage orientations are shown in Figure 1 and Figure 2. The damage severity is defined by the 

thickness loss in the plate and taken as b, as shown in Figure 2. The damage locations are 

characterized by their coordinates (x- and y-axes), and 25 different damage locations and 50 different 

damage severities were randomly selected on the plate model. The numerical deflection lines were 

computed by SAP2000. The Paul mother wavelet was selected for the CWT after several trials and 

errors. 

The total number of input pattern was 672, and the inputs were the x- and y-axes coordinates of the 

detected damage and the WT moduli mean value. Training of the neural network stopped at 700 

epochs or when the msereg reaches 10
-3

. The performance of the neural network for best prediction is 

shown in Figure 6(a). The predictions of the neural network are shown on the y-axis, while the actual 

values are on the x-axis. From Figure 6(a), all points lie very near the line called the best linear fit. The 

correlation coefficient is 0.9904 and is very close to 1, this indicates very good compatibility between 

the outputs and targets. 

 

    
(a) Training mode     (b) Testing mode  

Figure 6. Damage severity results. 

5.3. Testing of neural network  

Noise-free numerical data of the steel plate was applied for testing of the trained neural network. A 

total of 10 different damage locations and 15 different damage severities were randomly used to test 

the neural network. The damage set comprised of 100 patterns. These damage patterns were totally 

different from the damage patterns applied in training the neural network. However, the neural 

network was able to provide good predictions that were in good agreement with the actual values. The 

correlation coefficient reaches 0.9882. The results of the testing mode are shown in Figure 6(b). It can 
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be concluded that neural network can accurately predict damage severity when the appropriate damage 

WT parameters are applied as input. 

 

6.   Conclusion 

This paper presented a neuro-wavelet damage detection method for damage identification in plate 

structures. A numerical example of a square steel model was utilised. Damage identification was done 

in two phases. The first phase involved WT decomposition of mode shape differences to detect and 

locate damage. The second phase utilised neural network to predict the damage severity. A 

backpropagation neural network was trained using damage parameters obtained from the WT moduli 

and detected damage coordinates. This study showed that WT can successfully detect and locate small 

damage in plate structure by utilizing the mode shape difference. In addition, neural network can 

predict damage severity in plate structures with a high degree of precision. The architecture of neural 

network to damage detection plays a role in obtaining accurate result and reducing computational 

time. 
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