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Abstract. In this paper, the dynamic analysis of piecewise-homogeneous poroelastic bodies on 

the example of a composite three-dimensional column is presented. Biot's model of the 

material, consisting of a solid phase and two fluid phases (liquid and gas) that filling the pores, 

is used to describe the poroelastic medium. The boundary element method is used in 

combination with the time-step method for the numerical inversion of the Laplace transform. 

The points in the complex plane for calculating the solution are chosen in a special way using 

the Lobatto method. The two- and the three-stage schemes are considered. 

1.  Introduction 

The research continues a series of the works devoted to the application of the boundary elements 

method combined with the time-step schemes built on the Runge-Kutta methods nodes in problems of 

the poroelastic dynamics. The results of applying this approach in problems of the dynamics of 

homogeneous and composite fully saturated poroelastic bodies for the cases of two-stage schemes 

Radau and Lobatto, were published previously [1, 2]. As well as for problems of the dynamics of 

homogeneous partially saturated poroelastic bodies for the cases of two and three-stage schemes 

Radau and Lobatto [3, 4]. In this paper, the boundary element method is generalized for composite 

partially saturated poroelastic bodies. Two- and three-stage Lobatto methods are used for the iterative 

process organization. 

In general, the approach is based on the convolution quadrature method (CQM) proposed by 

Lubich in 1988 for discretization of the convolution integral [5, 6]. The method has enlisted the 

considerable interest as a technique for applying BEM in dynamic problems (CQ-BEM), in which the 

classic time-stepping schemes show instability and numerical damping [7-10]. Later in various studies 

it was shown that the time-stepping BEM scheme, based on the Runge-Kutta methods, provides better 

accuracy than the scheme based on the linear multi-step method [11-15]. Banjai and Sauter also 

proposed a formulation for uncoupled problems in the Laplace transform domain, within which the 

technique actually works as an inverse transform method. The approach posses the original method 

benefits related to the numerical stability and has the time step value as the only parameter, which is 

determined by the physical characteristics of the problem. 
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2.  Models and methods 

A set of fully coupled governing differential equations of a porous medium saturated by two 

compressible fluids (water and air) subjected to dynamic loads is considered. In this formulation the 

solid skeleton displacements iu , water pressure wp  and air pressure ap  are presumed to be 

independent variables [16]. The final differential equations in the Laplace domain yield 
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where ˆ
iF , ˆwI , ˆaI  are bulk body forces and symbol “^” denotes Laplace transform with complex 

variable s. The expressions for the differential operator coefficients are presented in Appendix A. The 

parameters of the model of a poroelastic material and their values used in further calculations are listed 

in table A1. Equation (1), supplemented by boundary conditions, fully describes the boundary value 

problem in the representations of the 3D isotropic dynamic theory of poroelasticity. When a problem 

involves more than two poroelastic bodies in full contact, equation (1) is written for each body in 

partitioned form and the resulting equations are coupled together through equilibrium and 

compatibility at their interface [17]. 

The boundary-element technique is based on the use of a regularized boundary integral equation 

(BIE) direct approach: 

  ( , , ) ( , ) ( , ) ( , ) ( , , ) ( , ) , , ,s s s d s s d
 

        
0

T x y u х T x y u y U x y t x x y , (2) 

where ( , , )sU x y  and ( , , )sT x y  are matrices of fundamental and singular solutions, respectively, 

( , )0
T x y  contains isolated singularities, x is integration point, y is observation point, u  is generalized 

displacement vector, t  is generalized force vector. 

To solve equation (2), the boundary surface   is divided into the generalized eight-node 

quadrangular elements. Generalized boundary functions of the first kind are approximated bilinearly, 

and generalized boundary functions of the second kind are assumed to be constant over the element. 

The discrete representation of BIE (2) is constructed at the interpolation nodes of unknown 

boundary functions (collocation points) and has the following matrix form 

 [ ]{ } [ ]{ }  G T F U . (3) 

Matrices G  and F  contain integrals of the components of matrices ( , , )sU x y and ( , , )sT x y , 

multiplied by the shape functions. The choice of the numerical integration scheme for computing the 

integral depends on its type. When a collocation point lies on integration element, the procedure for 

revealing the feature is performed. To improve the accuracy of integration on an element that does not 

contain a collocation point, in addition to the Gauss integration formulas, a hierarchical integration 

algorithm is applied, wherein the element is subdivided until the specified accuracy is achieved. 

The solution in the time domain is obtained using the time-step method of numerical inversion of 

the Laplace transform. This method is close in its formulation to the CQM, but, in contrast to it, is 

based on the operational calculus of integrating original ( )f s  of representation ˆ ( )f s . In general, the 

integral 
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is approximated as follows [11]: 
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where N is number of equal time steps. In this expression the quadrature weights t

k


ω  are determined 

using Laplace representation ˆ ( )f s  and the Runge-Kutta method. The quadrature weights can be 

expressed by the Cauchy integral form and approximated by using a trapezoidal rule with the number 

of steps L as follows: 
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 1 1 1( ) Tz z    A A 1b A , (7) 

where ( )z  is characteristic function of the Runge-Kutta method and (1,1,...,1)T1 . The parameter R 

can be calculated by 

 LR  , (8) 

where   is the error of the numerical calculation of equation (6). 

The approximation used in deriving formulas (6), (7) is based on the m-stage Runge-Kutta method 

written down employing Butcher’s table: 

 
|
T

с A

b
, m mA , , mb c . (9) 

A correct formulation of a time-step scheme requires that the method be A-stable and L-stable. In 

the assumption of 1 (0,...,0,1)T  b A , the method is automatically L-stable. It is also important to note 

that the quadrature weights t

k


ω  and the characteristic function ( )z  are m-order matrices. 

In the present study, Lobatto (Lobatto IIIC) scheme was chosen as a particular example of the 

Runge-Kutta schemes meeting the formulated conditions. 

3.  Results and discussion 

The problem of the impact of force 2( ) 1 /F t N m  on compound prismatic poroelastic column with a 

rigidly fixed end is considered. The problem setting is shown in figure 1. Boundary-element meshes 

for each of the parts 1  and 2  contain 512 elements. Plots of displacement and pore pressure at the 

midpoint of the body are shown in figures°2–3. Comparison of the results, obtained using nodes of 2- 

and 3-stage Lobatto methods, was carried out. 

 

 
Figure 1. Geometry and boundary conditions of a partially saturated poroelastic column. 
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Figure 2. Displacement 3u  versus time at the midpoint of column. 

 

  
(a) (b) 

Figure 3. Pore pressures 
ap  (a) and 

wp  (b) versus time at the midpoint of the column. 

 

Calculations using the 2-stage Lobatto method were performed with the time step value 

0.00003t s  , and using the 3-stage Lobatto method with 0.00012t s  . Despite the significant 

difference in the time step values, the differences between the dynamic responses of the displacements 

obtained for each case are almost not noticeable on the plots. Fluctuating change of pore pressures 

allows comparing of the results in conditions of additional difficulties of approximation. The solution 

shown in figure 3, which obtained using three-stage method, is sufficiently smooth and retains the 

stable behavior on the considered time interval. In turn, the solution obtained using two-stage method, 

although smoother, but shows significant oscillations at the wave front points. 

4.  Conclusion 

A boundary-element approach for solving the initial-boundary-value problems of the three-

dimensional poroelastic bodies dynamics, which based on the application of the boundary elements 

method combined with the time-step scheme built on the Lobatto method nodes, is presented. 

Numerical studies of a model problem of the Heaviside function impact on a three-dimensional 

prismatic composite poroelastic body are carried out. A good agreement between the numerical 

boundary-element solution and the analytical solution is demonstrated. 
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Appendix A 

Table 1. Parameters of Massilon sandstone 
    

Parameter type Symbol Value Unit 

Porosity    0.23 - 

Density of the solid skeleton 
s   2650 kg/m

3 

Density of the water 
w  997 kg/m

3
 

Density of the air 
a  1.10 kg/m

3
 

Drained bulk modulus of the mixture K  1.02×10
9 

N/m
2 

Shear modulus of the mixture G  1.44×10
9
 N/m

2
 

Bulk modulus of the solid grains 
sK  3.5×10

10
 N/m

2
 

Bulk modulus of the water 
wK  2.25×10

9
 N/m

2
 

Bulk modulus of the air 
aK  1.10×10

5
 N/m

2
 

Intrinsic permeability k  2.5×10
-12

 m
2 

Viscosity of the water 
w  1.0×10

-3
 Ns/m

2 

Viscosity of the air 
a  1.8×10

-5
 Ns/m

2
 

Gas entry pressure dp  5.0×10
4
 Ns/m

2
 

Saturation degree 
wS  0.9 - 

Residual water saturation 
rwS  0 - 

Residual air saturation 
raS  1 - 

Pore size distribution index   1.5 - 
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