
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

BEM modeling of a 3D homogeneous anisotropic elastic half space
under dynamic load
To cite this article: I P Markov and L A Igumnov 2019 IOP Conf. Ser.: Mater. Sci. Eng. 510 012011

 

View the article online for updates and enhancements.

This content was downloaded from IP address 122.152.138.139 on 18/09/2019 at 23:49

https://doi.org/10.1088/1757-899X/510/1/012011
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/239663309/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

HTRA 2018

IOP Conf. Series: Materials Science and Engineering 510 (2019) 012011

IOP Publishing

doi:10.1088/1757-899X/510/1/012011

1

 

 

 

 

 

 

BEM modeling of a 3D homogeneous anisotropic elastic half 

space under dynamic load 

I P Markov and L A Igumnov 

Research Institute for Mechanics, National Research Lobachevsky State University of 

Nizhny Novgorod, 23, bldg. 6, Prospekt Gagarina (Gagarin Avenue), Nizhny 

Novgorod, 603950, Russia 

E-mail: teanku@gmail.com 

Abstract. In this paper, we consider a problem of a homogeneous anisotropic and linearly 

elastic half space subjected to dynamic loading. Zero body forces and vanishing initial 

conditions are assumed. The problem is solved using the Boundary Element Method in the 

Laplace transformed domain. Integral expressions of the three-dimensional dynamic 

fundamental solutions for displacements and tractions are utilized. We employ the 

displacement boundary integral equations which are regularized using the static part of the 

dynamic anisotropic traction fundamental solution. For the spatial discretization of the 

boundary integral equations mixed boundary elements are adopted. The geometry of the 

considered domain is approximated with quadrilateral quadratic eight-noded elements. On the 

boundary elements displacements and tractions are interpolated using linear and constant shape 

functions, respectively. Time-domain solutions are obtained using suitable scheme for 

numerical inverse Laplace transform. The boundary-element solutions for the illustrative 

problem of an anisotropic elastic half space subjected to a Heaviside-type load are provided. 

1. Introduction 

Modeling the elastic wave propagation in large unbounded domains is often required in a number of 

engineering problems such as dynamic soil-structure interaction, in the fields of geotechnical 

engineering, foundation engineering, seismology and so on. Particularly, Rayleigh surface wave 

propagation [1] is of significant importance. Most naturally occurring soils are rarely isotropic and in 

practical cases can be modelled by an anisotropic and linearly elastic medium. Taking into account 

anisotropy of the elastic properties brings considerable difficulties even for the relatively simple 

configurations of the problems involving unbounded domains and renders analytical examination of 

the dynamic wave propagation impossible. Thus numerical methods play the crucial role in studying 

the wave fields in infinite and semi-infinite anisotropic elastic regions. 

Though the nature of the boundary element methods (BEM) makes them particularly advantageous 

for the problems involving infinite domains, formulations for anisotropic materials is rather scarce (see 

e.g. [2-8]). This is due to the unavailability of the explicit closed form of dynamic fundamental 

solutions (Green's functions) for anisotropic elastic media. Wang and Achenbach [9, 10] obtained 

integral expressions for singular (static) and regular (dynamic) parts of anisotropic elastodynamic 

Green's function. Evaluation of the regular term of fundamental solution requires numerical 

integration of the two-dimensional integral. 
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In this paper, to investigate a problem of the wave propagation in an anisotropic elastic 

semi-infinite region we employ a conventional direct boundary element formulation based on the 

regularized displacement boundary integral equations (BIEs) in Laplace domain. Spatial discretization 

of the BIEs is based on the idea of mixed boundary elements. The geometry of the considered domain 

is approximated with quadrilateral quadratic eight-noded elements. On the boundary elements 

displacements and tractions are interpolated using linear and constant shape functions, respectively. 

After obtaining results in the Laplace domain the time-domain solutions are obtained using modified 

Durbin's method for numerical inverse Laplace transform. The presented BEM formulation is applied 

to a 3D dynamic problem of anisotropic elastic half space subjected to a Heaviside-type traction. 

2. Problem statement and BEM formulation 

We consider a homogeneous, anisotropic and linearly elastic solid occupying volume 3R  with 

boundary .  In the absence of the body forces and with vanishing initial conditions the 

Laplace-transformed equations of motion can be expressed as 

 
2

, ( , ) ( , ),ijkl k lj iC u s s u sx x  ,x  (1) 

where iu  is the displacement vector, ijklC  is the elastic stiffness tensor,   is the mass density and s is 

the Laplace transform parameter. 

The boundary conditions are given as follows 

 ( , ) ( , ),i iu s u sx x  ,ux  (2) 

 ( , ) ( , ),i it s t sx x  ,tx  (3) 

where it  denote the traction vector; 
iu   and 

it
  are the given displacements and tractions, 

correspondingly. 

The regularized displacement boundary integral equations can be expressed as  

 ( , ) ( , ) ( , ) ( , ) ( ) ( , ) ( , ) d ( ) 0,S

j k jk k jk k jku s u s h s u s h t s g s


      x y r x r y r y  ,x  (4) 

where , r y x  ( , )jkg sr  and ( , )jkh sr  are the 3D displacement and traction fundamental solutions in 

Laplace domain, respectively; ( )S

jkh r  is the static term of ( , ).jkh sr  

Spatial discretization of the BIEs (4) is based on the idea of mixed boundary elements [11]. The 

quadrilateral quadratic elements are employed to approximate the geometry of the boundary .  The 

linear and constant variation of the displacements and tractions, respectively, is assumed over each 

element. After the nodal collocation procedure and some rearrangements we obtain a complex-valued 

set of linear algebraic equations for the fixed value of Laplace transform parameter s 

    ( ) ( ) ( ) ,s s s  A p f  (5) 

where  ( )sp  is the vector of unknown field variables, vector  ( )sf  contains prescribed boundary 

values and ( )s  A  is the system matrix. 

3. Fundamental solutions 

Laplace transformed dynamic fundamental solutions for anisotropic media can be represented as a 

sum of singular (static, superscript "S") and regular (dynamic, superscript "R") terms as follows 

 ( , ) ( ) ( , ),S R

jk jk jkg s g g s r r r  (6) 
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 ,( , ) ( , ) ( ) ( ) ( , ),S R

jk ijkl kp l i jk jkh s C g s n h h s  r r y r r  (7) 

where ( )in y  is the unit normal vector to the boundary at the point y. 

Singular and regular terms of the fundamental solution are expressed in the form of a 

one-dimensional integral over a unit circle and in the form of a two-dimensional integral over the 

surface of a unit hemi-sphere as follows [9, 10] 

 1

2

1

1
( ) ( ) ( ),

8

S

ij ijg dL






 
d

r d d
r

 (8) 

 
3

| |

2 2
1| | 1

0

1
( , ) ( ),

8
mm im jm kR

ij

m m

k E E
g s e dS

c 

 


 

  
n r

n
n r

r n  (9) 

with 

 ,m mc    ,m mk s c  ( ) ,ij kijl k lC d d d  ( ) ,ij kijl k lC n n n  (10) 

    {0 2 },SdL D     d    , {0 1; 0 2 },DdS b D b       n  (11) 

   2, 1 ,b b b   n d e  ,re r   1 2 3, , ,e e ee  (12) 

    2 2

2 1 3 1 2 3 3 3cos sin , cos sin , 1 sin 1 .e e e e e e e e            
 

d  (13) 

where m  are eigenvalues of ( )jk n  and jmE  are the corresponding eigenvectors. 

4. Laplace transform inversion 

The inverse Laplace transform is defined as the follows 

 
1

( ) ( ) ,
2

i

st

i

f t f s e ds
i






 

 

   (14) 

where 0  is a real number greater than the real parts of all singularities of ( ).f s  

It is impossible to directly use equation (14) in situations when values of ( )f s  can be computed 

only at the discrete set of values of the Laplace transform parameter s. Following the work of 

Durbin [12], with the known Laplace transform ( )f s  we have for the ( )f t  

 ,s i    
0

1
(0) Re ( ) ,f f i d  





     (15) 

  
0

( ) Re ( ) cos Im ( ) sin ,
te

f t f i t f i t d


      




           0,t   (16) 

For more reliable and stable long time inversion we employ modification of the Durbin's method 

proposed by Zhao [13]. 

With R being some large real number and defining 1 2 10 ... n n R           we obtain 

 
1

1

1
(0) Re ( ) ,

k

k

n

k

f f i d





  






      (17) 
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  
1

1

( ) Re ( ) cos( ) Im ( ) sin( )
k

k

t n

k

e
f t f i t f i t d





      






           , 0.t   (18) 

On each interval  1, ,k k  
 1, ,k n  the Re ( )f s    and Im ( )f s    are approximated as follows 

 2

1 1

1 1
Re[ ( )] ( )( ) ( )( ) ,

2 2
k k k k k k k

k

f i F Z Z Z Z             


 (19) 

 
2

1 1

1 1
Im[ ( )] ( )( ) ( )( ) ,

2 2
k k k k k k k

k

f i F Y Y Y Y             


 (20) 

 1 ,k k k     1( ) 2,k k k     Re[ ( )],k kF f i    Im[ ( )].k kG f i    (21) 

The following system of linear algebraic equations is solved to determine kZ  1, 1k n   

 

1 1 1 2 1 0

1 1 1 1 1

1 1

3 8( ),

...

3( ) 8( ),

...

3 8( ).

k k k k k k k k k

n n n n n n

Z Z F F

Z Z Z F F

Z Z F F

    

 

    


        


    

 (22) 

Likewise for the kY  we have the following system 

 

1 1 1 2 1 0

1 1 1 1 1

1 1

3 8( ),

...

3( ) 8( ),

...

3 8( ),

k k k k k k k k k

n n n n n n

Y Y G G

Y Y Y G G

Y Y G G

    

 

    


        


    

 (23) 

with 
0 1Re[ ( )]F f i   , 

1 1Re[ ( )],n nF f i     
0 1Im[ ( )]G f i   , 

1 1Im[ ( )].n nG f i     

Finally, 

 1

1

1
(0) ( ) ,

24

n
k

k k k k

k

f F Z Z






 
    

 
  (24) 

 




1 2 1 12 3
1

1 1

1 1 1
( ) ( ) ( ) ( )(sin sin )

( )(cos cos ) , 0,

t n

k k k k

k k

k k k k

e
f t g t g t Z Z t t

t t t

Y Y t t t



 


 

 



 


    



   


 (25) 

where 

 

1 1 1 2 1 1 1

1 1

1 1
( ) ( 3 ) sin ( 3 )

8 8

1
( 3 ) cos ,

8

n n n n n

n n n n n

g t F Z Z t Y Y G

G Y Y t





 

 

 
        
 

 
    
 

 (26) 

 2 1 1 1 1 1( ) cos sin .n n n ng t Z Z t Y t         (27) 
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5. Numerical example 

An anisotropic homogeneous elastic half space with mass density 32216 kg/m  is considered. The 

otherwise traction free half space is subjected to a Heaviside-type tractions *

3 3 ( ),t t H t *

3 1000 Pat    

on a square with an area of 1 m2 as depicted at figure 1. The elastic stiffness tensor of the half space is 

given in Voigt notation as follows [14] 

 

17.77 3.78 3.76 0.24 0.28 0.03
19.45 4.13 0.41 0.07 1.13

21.79 0.12 0.01 0.38
GPa.

8.30 0.66 0.06
sym. 7.62 0.52

7.77

 
 
 

 
 
  

C  (28) 

 

Figure 1. Configuration of the half space problem. 

 

To use Zhao's modification of Durbin's method we need to define dimensionless frequencies 

.k  To this end we employ the following relation  

 ( ) 1,
mkx

k e    (29) 

with 0.5,m   1,2,...,800k   and   
1/

maxln 1 ,
m

x k   where max 400.   

Displacements 1( )u t  and 3( )u t  at the surface point  5,0,0 mA  and at the points inside half space

    5cos 8 ,0, 5sin 8 m,B        5cos 4 ,0, 5sin 4 m,C        5cos 3 8 ,0, 5sin 3 8 m,D    

(see schematic representation at figure 1) are shown at the figures 2 and 3, respectively. 

 

 
Figure 2. Displacements  1 .u t  

 
Figure 3. Displacements  3 .u t  
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Figure 4. Displacements  1 .u t  

 
Figure 5. Displacements  3 .u t  

6. Conclusions 

In this paper BEM formulation in the Laplace transformed domain was considered for problems of a 

homogeneous anisotropic and linearly elastic half space subjected to dynamic loading. 

Three-dimensional dynamic anisotropic fundamental solutions are represented as a sum of singular 

and regular terms which are expressed in the form of a one-dimensional integral over a unit circle and 

in the form of a two-dimensional integral over the surface of a unit hemi-sphere, respectively. Static 

term of the dynamic anisotropic traction fundamental solution is used to regularize the boundary 

integral equations. Spatial discretization rests on the idea of mixed boundary elements. 

The described boundary element formulation is then applied to a dynamic problem of an 

anisotropic elastic half space subjected to a Heaviside-type tractions. Obtained results show that the 

presented Laplace domain boundary element approach coupled with the modified Durbin's method 

produce accurate and stable results for the dynamic problems involving the semi-infinite domains and 

anisotropic materials. On a larger time scale it can be observed that dynamic solutions at all points 

tend to their respective static counterparts as depicted at figure 4 for the displacements 1( )u t  and 

figure 5 for the displacements 3( ).u t  
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