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Abstract. The light lens response in transparent nanosuspension with electrostrictive 

nonlinearity was analyzed. The theoretical analysis of the light-induced heat and mass transfer 

in the nanosuspension was carried out for the Gaussian beam radiation, when the concentration 

change gives rise to the thermal response due to the Dufour effect. The results are relevant to the 

study of the radiation self-action in the nanosuspension and optical diagnostics of such materials. 

1.  Introduction 

Nonlinear optical methods are used successfully for the diagnostic of the nanomaterials [1-3]. The 

noncontact methods for determining the kinetic coefficients of such media are useful in the critical 

conditions (for example, near the phase transitions) and so they are very interesting instruments for 

investigators [3-5]. The light-induced thermal lens in a homogeneous fluid is formed as a result of 

thermal expansion of a medium. The optical nonlinear response of the nanosuspensions includes the 

parameters of the nanoparticles. The thermodiffusion effect (Soret effect) in the binary mixtures was 

experimentally investigated by the optical nonlinear methods in many works [6]. Another mechanism 

of optical nonlinearity of the medium is due to the forces operating on the particles of the dispersed 

phase in gradient light field [7]. This optical nonlinearity was studied experimentally in nanosuspensions 

and microemulsions [8-10]. 

The purpose of this work is the theoretical analysis of the contribution of the Dufour effect to the 

light induced lens response in the transparent nanosuspension with the electrostrictive nonlinearity. 

 

2.  Electrostrictive mechanisms of the cubic nonlinearity in nanosuspension 

The coefficient of cubic nonlinearity for the electrostrictive mechanism is determined by the 

concentration nonlinearity: 

))(( dC/dIdC/nneff d=2  (1) 

Where n  is the refraction index of the medium, I is the radiation intensity, C  
is the concentration of 

nanoparticles, )/(=2 dIndn
eff

 is the coefficient of effective cubic nonlinearity. 

In nanosuspension the particle radius is much smaller than the radiation wavelength , therefore the 

refractive index of the medium is proportional to the concentration of particles [4]: 

)( ε+1= 1 fnn , (2) 
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where 
112 )(=ε nn-n ; 1n  and 2n  

are the refractive indices of the liquid and the dispersed phase, 

respectively;
 

Cvf 0=  is the volume fraction of the dispersed phase, 0a  is the radius of the nanoparticle, 

3
00 π)34(= av  is the volume of the nanoparticle. 

Balanced equation describing the dynamics of concentration of nanoparticles considering diffusion 

and electrostrictive flows can be written as [4]: 

),(- ICdivCD
t

C
∇=

∂

∂
  

(3) 

where D  is the diffusion coefficient, 1-)(πβ4=γ TnkcD B ,   is the particle polarizability, Bk  is the 

Boltzman constant, c  is the velocity of light in vacuum, )(rI  is the intensity of radiation.  

The transparent nanosuspension is under the influence of laser radiation with Gaussian intensity 

profile [2]: 

,=
2
0/

0
rr- 2

eII  
(4) 

where 0I  is the radiation intensity on the beam axis, r  is the radial distance from the beam axis, 0r

is the beam radius. 

This equation can be linearized in the case of low concentrations ( 1C ): 

 

( ))(()( t,rCCt,rC ′+1= 0 , 1<<′ )( t,rC ). (5) 

 

The exact solution of the equation (7) for this case can be written as [8]: 
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where 0C  is initial mass concentration of dispersed particles, 
2

00

~
4  rI  , DrD 4/=τ 2

0  
is the 

diffusion time. 

3.  Dufour effect in the Gaussian light field 

Dufour effect describes a heat flow when there is a stream of one component of a binary system [5]. 

Induced radiation modification of particle concentration leads to heat flow. This kind of phenomena in 

linear non-equilibrium thermodynamics is called cross-effects and is described by the balanced 

equations [11]: 
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(7) 

 

where T is the fluid temperature, ,pc  are thermal constants,   is the density of the material, 

C
c




 1
11


 , 1 is the chemical potential of dispersed phase, TS  is Soret coefficient, D  is the diffusion 

coefficient.  

The second term in equation (7) is related to that part of the heat flow, which occurs as a result of the 

particles flow in the system (Dufour effect). 

Using equation (6) the heat problem is: 
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where )ρ(λ= 1-
pca is the thermal conductivity, 1

0111 )(   cCSTb T
c . 

The resulting expression describes the temperature dynamics of optically transparent nanofluid 

influenced by Gaussian beam: 
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where arth 4/=τ 2
0  

is the thermal relaxation time. 

It is easy to see that ),( trT  as a function of time has a maximum. The appropriate time value mt  in 

beam center ( 0r ) is: 

aDrtm /= 2
0 . 

 

 

(11) 

4.  Light lens response 

Let's take a two beam thermal lens scheme (see Figure 1). The reference (Gaussian) beam generates the 

thermal field in the optical cell with nanosuspension. The second (Gaussian) beam tests the light lens.  

 

 
 

Figure 1. A light lens scheme (1 - the optical cell, 2- the screen with a pinhole, 3- the photodetector). 

The light lens signal shows the change of the beam intensity )(tI on the optical axis behind the screen: 
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where )(0I  is the beam intensity on the optical axis behind the screen at the starting point. 

The term for the lens transparency of the cell is used to calculate the light lens signal [5]: 
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(13) 

 

Where 2, zz1  are the distances from the cell centre to the Gaussian beam waist and to screen, 

respectively (fig. 1), λπ= /rl 2
00  is the confocal parameter, 0r  is the radius of the Gaussian beam waist, 

)0(Фnl  is the nonlinear phases in optical cell on the beam axis.  

Nonlinear phase consists of two deposits: the first appears due to thermal expansion of the liquid 

phase and the second is associated with a change in the concentration of dispersed particles: 
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(14) 
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(16) 

 

Where λπ/2=k  is the wave vector of the probing beam, d  is the thickness of a layer of the fluid. 

The obtained results (6,10) allow us to calculate the summarized light induced lens response (for 

nonlinear phases): 
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where )∂/∂( Tn  is the fluid parameter. 

The last expression is received for the time th t τ>> . The second term is characterized by the 

negative sign and reduces the whole lens response. But this contribution disappears in the stationary 

state. 

Thus, the expression was achieved for the light induced lens response in the nanosuspension. 

5.  Conclusions 

The two-dimensional diffusion in the nanosuspension with electrostrictive nonlinearity in a Gaussian 

beam of radiation was analyzed taking into account the Dufour effect. The Dufour effect leads to the 

existence of the thermal contribution to the lens response in the transparent nanosuspension which 

disappears in the stationary state. 

The expression was received for light induced lens response in nanosuspension. The results are 

relevant to nonlinear optics of nanosuspension [9-11], including the optical diagnostics of such nano-

materials [12-15]. 
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