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Abstract. The results of mathematical model development for evaluation of thermal state of 

spherical particles of powder composition equally treated in the technology of selective laser 

melting are presented. This model considers: features of laser irradiation energy transfer to the 

particles having smaller size but comparable with the size of radiation spot diameter; energy 

transfer through the sphere upper half; material melting in the solidus and liquidus range; 

possibility of surface material evaporation and dependence of material thermophysical 

parameters on temperature. This model is adapted to be used in standard finite-element 

software ANSYS Transient Thermal that has been applied for numerical simulation using 

powder of heat-resistant nickel-chromium alloy. Process regularities have been discovered, and 
it was shown that the range value of particles size scatter of powder composition fraction used 

determines principle possibility of choosing laser treatment mode to provide high quality 

material after melting. 

1. Introduction 
Today new technological state of modern industry is realized due to both powerful computer-aided 

design systems and new technologies. Additive technology of selective laser melting (SLM) of powder 

materials is among them.  
One of the main issues of SLM technology is reasonable choice of laser treatment mode of powder 

composition used. Significant amount of papers dealt with this issue [1-24], and they can be divided 

into two groups: papers based on experimental research results [7, 8, 10-14, 16-17] and papers based 
on mathematical simulations [1-6, 9, 15].  

In the papers dealing with mathematical simulation, we can distinguish two levels of process – 

macro-scale and micro-scale. At the macro-scale level, powder layer is simulated as a solid material 

with effective values of physical-mechanical characteristics.  The tasks of prediction of its heating and 
melting, thermal and residual stresses, material shrinkage and layer dimension variations are solved. 

At the micro-scale level, material is considered as a powder layer having various thickness and various 

arrangement of particles. The tasks of determining of thermal particles state, material spreading, 
estimation of penetration of melt into the lower layers, initiation and extinction of material voids are 

solved.  

In papers dealing with mathematical simulation, researchers come to conclusion that the mode 
range of laser treatment is very narrow, and it requires considerable numerical and experimental 

researches to get the material of required quality. 
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Analysis of papers shows that potential material characteristics produced from powder under its 

layer-by-layer treatment are defined by the treatment mode of each separate particle of this layer. 

Further layer treatment by multidirectional travelling of the laser beam, thermal treatment or 

impregnation allows, if possible, enhancing these characteristics and leveling some negative 
consequences of local laser treatment of the powder layer. 

The treatment mode of each separate particle is to provide at least its mandatory melting at the 

points of contact with other particles and the underlayer to provide topochemical interaction reactions 
of materials at these contact surfaces. However, under thermal flow density used and insertion of 

radiation through the upper half of the surface, particles of different sizes are heated up to various 

temperatures with substantial gradient throughout the height of their sections. This can result in 

heating of particles of other sizes less than melting point in the lower part and heating up to the 
vaporization temperature at the upper surface, but the heating temperature is optimum, if the particles 

are of the same size. For example, this different heating of particles of various sizes treated at the same 

mode allows us to conclude on insufficient informativeness of just experimental results and suggest a 
hypothesis on necessary use of particles just with certain scatter range of its sizes.  

As applied to the tasks of mathematical simulation of thermal processes in powder composition 

particles, treated at the same mode of SLM technology, it is required to take into account surface 
evaporation, dissymmetry of laser irradiation through the particle upper surface and dependence of 

thermal flow absorption on its incidence angle.  

Purpose of this paper is to report research results got during development of proper mathematical 

model of evaluation of thermal state of particles of powder composition treated at the same mode in 
the technology of selective laser melting and adapted to be used in the standard software ANSYS 

Transient Thermal. This mathematical model suits for applied use to determine optimum mode of 

composition treatment. Some results of numerical research of powder composition of heat-resistant 
nickel-chromium alloy ВВ751П are given. 

2. Process conceptual model 
In the typical SLM process, powder is put on the platform surface to manufacture a workpiece or it is 

put on the previously alloyed layer with successive vertical shift of the movable platform part by 
30…100 μm. Powder is levelled by height and consolidated with the scraper travel that is pressed to 

the fixed part of the platform surface. Powder layer is treated by the laser energy beam continuously 

travelling the desired path along the model section contour in order to fuse the powder at this contour. 
Then powder fusion within the distinguished contour is carried out when the beam is traveling along 

the desired continuous path. At the completion stage, the layer is blown by a laminar gas flow to 

remove air-floated particles.  

3. Mathematical modeling of particle heating in selective laser melting 
Statement of mathematical model of the processes of heating, melting, the following crystallizing and 

cooling-down of the spherical particle of the metal alloy with the temperature range of the phase 

transition is to include corresponding differential heat conduction equation, initial and boundary 
conditions. Boundary condition is to consider features of heat transfer to the particle from laser 

irradiation and features of heat exchange between the particle and the environment.   

It can be shown that typical differential heat conduction equation for an isotropic body with 
emitting and absorbing heat in the volume [19] can be brought to the following form considering 

phase material transformation at the solidus and liquidus range, possibility of surface evaporation and 

adapted to end-to-end finite-element procedure to be used in the standard software ANSYS: 

       ef

T
c T T div T grad T

t
 


   

    (1) 

The following designations are used in (1): 
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    S S ev evL
ef

L S L S S L ev ev
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c T c T

T T T T T T T T
   

         
          

         

,  (2) 

where  ,T t r   is temperature at the time moment t of the body point having coordinate r ; 

   ,c T T  and  T  is specific thermal capacity, density and material thermal conductivity 

coefficient; ,S LT T and evT  is solidus and liquidus temperature and material evaporation temperature; 

L  and evL  is specific fusion and evaporation heat; div  and grad  is differential operators of  

divergence and gradient;  u  is unit Heaviside function (   0u   when 0u   and   1u   

when 0u  ) and  u  is Dirac delta function with corresponding dimensionless arguments; 

   S L S
T T T T      is rate function of phase transition (in the instant melting case it is called by 

analogy with the known function called crystallization rate [20]) connected with specific volume share 

of new liquid phase in the nominal volume of melted material in the liquid crystal area of the phase 

transition    S L S
T T T T      by the relation   ( )u d u du  .  

This differential heat conduction equation (1) retains the same in different body parts with and 
without phase transitions as well as for various stages of its heating and cooling. 

Initial condition is the equality of the temperature to the initial temperature of the sphere material at 

the time moment 0t  : 

   00,T r T r .  (3) 

Boundary condition is determined by the fact that laser irradiation striking the upper sphere surface 

is converted into the thermal flow inserting the sphere surface normally to the upper half sphere 

material.  It acts during the period of passing over the particle. Boundary condition is also determined 

by convection cooling and thermal radiation of the whole surface. In a spherical coordinate system that 
is convenient in case of temperature distribution in the spherical particle, boundary condition is the 

following:  

          4 4, , 0.5 c c

T
T q t T T T T

r
         


            

, when r R .  (4) 

The following designations are used in (4): R  is spherical particle radius;   is coefficient of 

convective heat exchange;   is integral radiation coefficient of the sphere surface;   is Stefan-

Boltzmann constant; cT  is gas temperature in the chamber;   and φ is zenith and azimuth angles of 

the spherical coordinate system connected with sphere center; difference of unit Heaviside functions 

taking into account the fact that thermal flow to the sphere surface does not equal zero only in the 

zenith angle area 0 0.5    is given in square brackets. 

Thermal flow value  , ,q t    in general case is to depend on time t, zenith   and azimuth angle φ 

of spherical coordinate system as laser irradiation source travels over the sphere with constant speed 

 . In addition, thermal flow density is also to depend on zenith   as material absorption coefficient 

depends on incidence angle of laser irradiation. Therefore, temperature in the spherically symmetrical 
ball depends on the position of laser spot over the sphere, and it is not symmetrical of zenith and 

azimuth angle.  

In this formulation boundary problem (1) – (4), if  , ,q t   , it can be solved with numerical 

simulation using standard software ANSYS. Results of this numerical simulation have shown that 
calculations are very computer time-consuming, but the result is complex to analyze and insufficiently 

informative to develop technological suggestions on choice of optimum treatment modes of powder 

composition with sizes scatter range.  
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4. Results and discussion 
Numerical simulation of particle heating process introduced as a boundary problem (1-3) has been 

carried out using standard software ANSYS. Heating mode of the powder composition has been at 

heat flux 0q  at source traveling speed  . Adequacy of the mathematical model has been verified and 

confirmed by means of model parameters of the material based on accuracy of numerical calculations 
in comparison with results of known exact and approximate analytical solutions. It is also based on 

estimation of stability and convergence of solutions under decreasing of partition interval sizes, on 

calculation error of relation (4), and on comparison with the results of special experimental research.  
Composition treatment mode has been chosen by the following way. According to the particle 

heating simulation with particles of maximum diameter in the composition (for example, maximum 

diameter 50 or 40 µm) when the temperature in the sphere bottom point reaches material liquidus 

temperature ( 1346LT  °C), and the temperature in the sphere top point does not exceed material 

evaporation temperature ( 2913evT  °C) heating time of the particle has been chosen. According to 

this time, value of source travel speed has been determined, and heating period and heat flux that are 
to be applied to the particles of other diameters when treated at the same mode.  

Typical results of mathematical simulation are shown in Figure 1 and Figure 2. 

 

Figure 1. Temperature distribution of the sphere cross-section with diameter 50 µm when heat flux 
8

0 1 10q    W/m
2 
at the time moment 0.012587 s when its temperature at the bottom point has reached 

liquidus temperature 1346 °С. 



HTRA 2018

IOP Conf. Series: Materials Science and Engineering 510 (2019) 012005

IOP Publishing

doi:10.1088/1757-899X/510/1/012005

5

 

Figure 2. Temperature of the top and bottom points of the sphere with diameter 50 µm depending on 

the time period at heat flux 
8

0 1 10q    W/m
2
. 

5. Conclusion 
It has been found out that for the powder composition with particle diameters 50…20 µm there is no 

treatment mode at which the particles with maximum diameter 50 µm are completely melted, and the 
particles with minimum diameter 20 µm do not reach boiling at intensive evaporation. As a result, 

some research has been carried out to choose treatment mode of powder composition with narrower 

particle scatter range within 40…20 µm that has shown availability of the mode with complete melting 

of all the particles and just since evaporation of the particles with 20 µm diameter. 
As a result of numerical simulation SLM, basic treatment mode of powder composition 40…20 µm 

has been recommended. It provides heat flux 1.20610
9
 W/m

2 
and travel speed of the laser spot 

328 mm/s. Preliminary sizing of powder in delivery condition with extraction of recommended 

fraction is suggested. 
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