
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

A search-based software engineering for defect prediction in ubuntu
ecosystem
To cite this article: I Made Murwantara et al 2019 IOP Conf. Ser.: Mater. Sci. Eng. 508 012140

View the article online for updates and enhancements.

This content was downloaded from IP address 120.234.63.196 on 18/09/2019 at 16:23

https://doi.org/10.1088/1757-899X/508/1/012140
https://oasc-eu1.247realmedia.com/5c/iopscience.iop.org/446307861/Middle/IOPP/IOPs-Mid-MSE-pdf/IOPs-Mid-MSE-pdf.jpg/1?

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

TICATE 2018

IOP Conf. Series: Materials Science and Engineering 508 (2019) 012140

IOP Publishing

doi:10.1088/1757-899X/508/1/012140

1

A search-based software engineering for defect prediction in

ubuntu ecosystem

I Made Murwantara*, Sutrisno and Joseph

Informatics Dept, Faculty of Computer Science, Universitas Pelita Harapan

*made.murwantara@uph.edu

Abstract. A software defect may cost a lot for certain critical deployment such as

communication and inter-process management that affects the CPU processes. A lot of time

and efforts can be saved if we can predict the potential defect. In this study, we propose an

approach to identify and predict the software defects that make use of Search-Based Software

Engineering (SBSE) via a network model that collects its dataset from Ubuntu package

repositories. We create a network model of package dependency that generated from the

repository via a graph utility, namely debtree. In order to explicate the conflict between

packages, we analyze the package inter-dependencies as related graph clusters. Since the

massive number of dependencies, we use several Machine Learning methods to analyze and

predict the potential software defect. Our investigation result shows that the SBSE technique

has efficiently improved the defect identification process.

1. Introduction

Open source repository is a way of modern software distribution that are managed in packages. A

Software in a package can be installed or removed in a random way by referring to their dependencies.

In the Ubuntu package repository, package manager control most of all actions that related to

installation, removal and administrative tasks, automatically, without user intervention. With this

manner, a package configuration should be able to setup a matching package dependency in the

direction to build and deploy an application.

A software repository, such as Ubuntu repository, consists of thousands of packages that evolves

through out the years. Most of these packages have dependencies to create functionality as application

that is built from the ecosystem. However, a package may have conflict to other packages in the

repository because of certain reason. One of the reason is the update of functionality to enhance

security and performance that may affect existing package dependencies.

In last decade Search-Based Software Engineering (SBSE) technique has been utilized to identify

defect [1,2,3] and analyze software repository [4] in most open source ecosystem. Since Open source

Operating System distribution repository, such Ubuntu and FreeBSD, may consists a large number

amount of software packages or components, identifying defect in a repository become an interesting

issue and has been explored by many research groups. Artho et al. [5] have investigated the inter-

package conflict of the Debian repository. They found that with more detailed of package meta-data

will prevent one third of conflict packages in a repository. Tan et al. [6] studied on software bug

characteristic of open-source software in Linux kernal, Mozilla and Apache. Sharma et al. [7]

developed a prediction model to find bugs within open-source repositories due to source code changes.

TICATE 2018

IOP Conf. Series: Materials Science and Engineering 508 (2019) 012140

IOP Publishing

doi:10.1088/1757-899X/508/1/012140

2

Boisselle et al [8] show that cross-distribution within Debian and Ubuntu has created duplicate bugs

and spent a vast amount of lost time due to the delay for the community to fix the problem. In this

work, we analyze and predict the defect within Ubuntu repository in a network model of package

dependency. This paper aims to empirically investigate the relationship between bugs in the Ubuntu

package repositories and their conflict dependency as stated in the packages control manager.

2. Method and materials

2.1. Creates Data Set

In this work, we create dataset from several versions of Ubuntu repositories, namely Ubuntu

distribution version 12, 14 and 16. The steps to obtain dataset as follow, first, in a repository; a list of

packages is created by retrieving all available package names that installed in a standard installation of

a particular Ubuntu release. Then, we retrieve all the packages description from the package list. We

make use of “debtree”, the Ubuntu utility to retrieve and transform the package with its dependency

into a network like model which is in the form of Graphviz, the network model shown in Figure 1.

After that, we transform the network model into data set in csv format before we analyze it using

several Machine Learning model. In our dataset, each package has its dependency is categorized into

depends-on as 1, conflicts as 2 and suggest as 3. We interested with conflict packages, so that the

dataset is transform only to have conflict information. The Decision Tree make split based on the

complex parameter that is accepted by the R Rpart package.

Figure 1. An Excerpt of Network Model Retrieve from Ubuntu Package Repository.

2.2. Method

We make use Classification Tree (CT) to analyse conflict between packages based on their relation of

dependencies. The Regression Tree (RT) differs to CT in term of prediction value comparison on each

node, as shown in Figure 2. In each node RT has two values as prediction output and percentage

number of observation data. In order to optimize a tree and to reduce error we prune the Classification

Tree (CT) and Regression Tree (RT). Pruning is done based on minimum split and parameter

complexity of each model. Then, the result tree will have its parameter complexity that should

minimize error. We choose the Complexity Parameter (CP), based on minimum xerror where it is the

variable that consists of error prediction from a cross-validation for each split. We pick value

0.006894 as the CP to prune our Classification Tree (CT).

Pruning in CT presents a bigger tree with more accurate prediction. This is because of decision tree

that make the reduction of split if it has bigger cross-validation error then the previous training.

Pruning in Regression Tree (RT) is similar to the Classification Tree (CT). Based on the conditional

probability of RT, we choose complexity parameter of 0.000910531 that has cross-validation error

minimum of 0.819192.

TICATE 2018

IOP Conf. Series: Materials Science and Engineering 508 (2019) 012140

IOP Publishing

doi:10.1088/1757-899X/508/1/012140

3

(a) (b) (c)

Figure 2. Decision Tree of Linux Library, (a) Regression Tree; (b) Classification Tree with

explanation in (c).

Random Forest (RF) is an ensemble tasks that combine classification and regression that construct

decision trees from its nearest neighbor predictor. In our work, RF split point indicates the relation of

package that contain node terminal or output prediction. However, RF cannot predict beyond the

training data when uses regression. In order to decide the split of decision trees, rather than using all

input variable, a randomly chosen input is selected. This technique can help to improve the prediction.

Therefore, it is worth investigating the RF result in our data set to have better prediction.

3. Results and discussion

3.1. Prediction Results

Our prediction is in the form of a confusion matrix where its column presents the prediction value. As

shown in Table 1, that presents a prediction related to conflict in a test case. A pruned Classification

Tree (CT) and Regression Tree (RT) outperform others. We also found that CT has only 116 (108 + 8)

packages have conflicts. Consistently, the CT pruned has also 166 (99 + 17) conflict packages.

Moreover, unpruned RT has double prediction of defects in their future development compares to CT

that is 8 (0 + 8) for CT and 16 (16 + 10) for RT. And, for pruned RT has also almost double potential

conflict than CT, that is 30 (2 + 28) for RT and 17 (0 + 17) for CT. This information gives us insight

into prediction that RT outperforms CT for pruned and unpruned tree.

Table 1. Prediction on Classification Tree (CT) and Regression Tree (RT) – F(False) and T (True)

Actual CT CT (Pruned) RT RT (pruned)

F T F T F T F T

False 534 0 534 0 528 6 532 2

True 108 8 99 17 106 10 88 28

Prediction using Random Forest shows a better prediction than Classification Tree and less than

Regression Tree without pruned, as shown in Table 2 that predict 26 defects.

TICATE 2018

IOP Conf. Series: Materials Science and Engineering 508 (2019) 012140

IOP Publishing

doi:10.1088/1757-899X/508/1/012140

4

Overall, the pruned tree has enhanced the prediction of potential defects within versions of Ubuntu

repositories. We also test the accuracy of our prediction by checking into Ubuntu Bug reporting

system (https://bugs.launchpad.net/ubuntu/).

Table 2. Prediction using Random Forest

 CT

FALSE TRUE

False 534 0

True 90 26

3.2. Evaluation

Performance evaluation measures the work of algorithm Machine Learning for accuracy and precision

[9,10,11,12,13,14,15,16]. We use the most common method to measure performance, which are Mean

Squared Error (MAE), Mean Absolute Error (MSE), and Root Mean Square Error (RMSE). Both,

MAE and RMSE are sufficient to measure performance using the data set that is created using package

dependency within Ubuntu repository.

Mean Absolute Error (MAE) gives equal weight to all errors that is based on the average magnitude of

errors in a set of predictions beyond its direction. As shown in equation 1, where ŷi is the predicted

bugs and yi is the actual bug in the repository and T is the number of examples used for testing. MAE

is recommended for being unbiased towards under and overestimations and describe uniformly

distributed errors.

𝑀𝐴𝐸 =
1

𝑇
∑ |ŷ𝑖 −

𝑇

𝑖=1

𝑦𝑖| (1)

Mean Squared Error (MSE) measures the average of the square error of the distance between

prediction and actual value, as shonw in equation 2.

𝑀𝑆𝐸 = ∑ |ŷ𝑖 − 𝑦𝑖|2 (2)

𝑇

𝑖=1

Root Mean Squared Error (RMSE) assumes of unbiased error and has normal distribution that

consider between prediction and actual observation, is shown in equation 3. RMSE emphasizes large

errors more and is suitable for evaluating how closed the observed data points to the predicted values.

𝑅𝑀𝑆𝐸 = √
∑ |ŷ𝑖 − 𝑦𝑖|2 𝑇

𝑖=1

𝑇
 (3)

As shown in Table 3, Random Forest (RF) outperforms all methods in "Accuracy" as the highest,

and the lowest error rate in MAE, MSE and RMSE. For pruned RT, it has similar performance to RF

that is 86.2 %. However, RT has the lowest performance compares to all models.

https://bugs.launchpad.net/ubuntu/

TICATE 2018

IOP Conf. Series: Materials Science and Engineering 508 (2019) 012140

IOP Publishing

doi:10.1088/1757-899X/508/1/012140

5

Table 3. Model Performance of CT = Classification Tree, RT = Regression Tree

 and RF = Random Forest.

Model MAE MSE RMSE Accuracy %

CT 0.2800000 1.1876923 1.0898130 83.3

CT (pruned) 0.2661538 1.1615385 1.0777469 84.8

RT 0.4430945 1.1128262 1.0549058 82.7

RT (pruned) 0.3552781 1.1015966 1.0495697 86.2

RF 0.2128813 0.926039 0.9623092 86.2

4. Conclusion

We have presented a Search-Based Software Engineering technique to predict defect in Ubuntu

software repository. The dataset is obtained from Ubuntu distribution 12, 14 and 16 repositories. The

training and testing is 70% and 30% of overall dataset. As the dataset is created from the dependency

between packages, the data is (like) a network model. Our result shows that Random Forest model

outperforms Classification Tree and Regression Tree to predict possibility of bugs in the repository

with accuracy 86.2%. In our results, we found that pruned tree may produce a better result in

predicting conflicts in Ubuntu repository.

For future work, we would like to investigate using fully graph method for machine learning that

focuses of how a potential defect may influence functionality within Ubuntu system.

5. Acknowledgement

This work was supported by LPPM Universitas Pelita Harapan, contract number

P-038-FIK/VII/2018

6. References

[1] P. Abate, R. D. Cosmo, L. Gesbert, F. L. Fessant, R. Treinen, and S. Zacchiroli. Mining

component repositories for installability issues. In 2015 IEEE/ACM 12th Working

Conference on Mining Software Repositories, pages 24–33, May 2015.

[2] P. Abate and R. Di Cosmo. Adoption of academic tools in open source communities: The

debian case study. Open Source Systems: Towards Robust Practices, pages 139–150, Cham,

2017. Springer International Publishing.

[3] C. Artho, R. D. Cosmo, K. Suzaki, and S. Zacchiroli.Sources of inter-package conflicts in

debian. CoRR, abs/1110.1354, 2011.

[4] V. Boisselle and B. Adams. The impact of cross-distribution bug duplicates, empirical study on

debian and ubuntu. In 2015 IEEE 15th International Working Conference on Source Code

Analysis and Manipulation (SCAM) , pages 131–140, Sept 2015.

[5] G. Canfora, A. D. Lucia, M. D. Penta, R. Oliveto, A. Panichella, and S. Panichella. Multi-

objective cross-project defect prediction. In 2013 IEEE Sixth International Conference on

Software Testing, Verification and Validation, March 2013.

[6] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, 2006.

[7] A. Ghannem, G. El Boussaidi, and M. Kessentini. On the use of design defect examples to

detect model refactoring opportunities. Software Quality Journal, 24.4, Dec. 2016.

[8] R. Hertzog and R. Mas. The Debian Administrator’s Handbook: Debian Squeeze from

Discovery to Mastery, 2012.

[9] R. Malhotra, N. Pritam, and Y. Singh. On the applicability of evolutionary computation for software

defect prediction. In 2014 ICACCI, Sept 2014.

[10] I. M. Murwantara, B. Bordbar, and L. L. Minku. Measuring energy consumption for web service

product configuration. In Proceedings of the iiWAS’14, pages 224–228, New York, NY, USA,

2014. ACM.

TICATE 2018

IOP Conf. Series: Materials Science and Engineering 508 (2019) 012140

IOP Publishing

doi:10.1088/1757-899X/508/1/012140

6

[11] E. Rubini ́c, G. Mauˇsa, and T. G. Grbac. Software defect classification with a variant of NSGA-II

and simple voting strategies. In M. Barros and Y. Labiche, editors, Search-Based Software

Engineering, 2015. Springer International Publishing.

[12] M. Sharma and A. Tondon. Developing prediction models to assist software developers and support

managers. ICCSA 2017. Springer International Publishing.

[13] J. D. Strate and P. A. Laplante. A literature review of research in software defect reporting. IEEE

Transactions on Reliability, 62(2):444–454, June 2013.

[14] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai. Bug characteristics in open source software.

Empirical Software Engineering, 19(6):1665–1705, Dec 2014.

[15] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumoto. The impact of automated

parameter optimization on defect prediction models. IEEE Trans. on Software Engineering,

2018.

[16] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan. Cross-project defect prediction using a connectivity-

based unsupervised classifier. In 2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE), pages 309–320, May 2016.

