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Abstract. This paper proposes the bootstrap principal component analysis for the classification 

of an impervious land area. The impervious surface is closely related to the urban development 

area, and therefore, crucial to the urban planning of the city. In this paper, we use the remote 

sensing technology to map each pixel of the images as impervious land, water area, or empty 

lands. The case study is the Jabodetabek area in Indonesia, which is a megapolitan area consisting 

of megacities of Jakarta, Bogor, Depok, Tangerang, and Bekasi. The area is the political and 

economic center of the country. We evaluate the model using Cohen’s kappa coefficient, which 

shows that the model has excellent performance in classifying those three land-cover classes. 

1.  Introduction 

The development of the urban area is closely related to the land-cover and land-use change of the area 

over time [1]. The decision process of urban development involves many parties, and the decision can 

affect many aspects in society. Economically, the expansion of city areas can bring prosperity and 

sources of income to the region. Though unplanned development of urban areas can lead to many 

environmental issues, such as floods and soil degradation. Therefore, knowledge of land-use and land-

cover within an area becomes increasingly essential for the stakeholders [2]. By mapping and analyzing 

the regional changes in land-use, it is hoped that the development of the area can avoid the deterioration 

of the environmental quality and the destruction of the ecosystem [3]. 

One of the key indicators of economic development in urban areas is the impervious area [4, 5], e.g., 

buildings, rooftops, paved roads, and parking lots, in the region. With the rapid urbanization, the manual 

process of surveying and analyzing the land-cover by hand can be tedious, inefficient, and ineffective. 

Therefore, a system which can map a large area automatically can be helpful for the urban development 

planning. By utilizing the remote sensing technology and satellite imagery, the system can process the 

image of a particular region and classify each pixel as one of the land-covers. This paper proposes the 

impervious land classification system using the bootstrap principal component analysis and regression 

model. Additionally, the system can also detect the water area and empty lands, as those land-covers are 

closely related to the impervious area. 

2.  Data and Methods 

This section discusses the data and methods used in this research.  The impervious land classification 

system employs the remote sensing data retrieved from the Landsat 7 satellite. The digital values of each 
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Landsat 7 bands are analyzed using the bootstrap resampling and the principal component analysis to 

classify each pixel as either impervious surface, water bodies, or empty lands. 

2.1.  Data 

This research uses the Landsat 7 satellite images that are freely provided by the United States Geological 

Survey and can be downloaded from the GloVis website1. The satellite is the seventh iteration of the 

Landsat satellite program that was launched on April 15, 1999, and currently being managed by the 

NASA. The Landsat 7 is equipped with the enhanced thematic mapper plus (ETM+) sensor [6], which 

consists of seven thermal bands and one panchromatic band. On May 31, 2003, the scan line corrector 

(SLC) instrument experienced permanent failure resulting in data gaps on every image collected since 

July 2003 [7]. Despite the failure, the Landsat 7 still operates normally, even though some preprocessing 

methods to fill the data gaps are needed to compensate the instrument failure. Moreover, the Landsat 7 

satellite has 16 days repeat cycle. 

 

 
Figure 1. The Landsat 7 satellite imagery (band 1-5 and 7) showing the area of Bekasi, Karawang, and Cikarang. 

 

Table 1 below shows the characteristic of each Landsat 7 bands. Satellite images from band 1, 2, 3, 

4, 5, and 7 are used in this research. We experiment on 2006, 2008, 2010, 2011, and 2012 satellite 

images of Jakarta, Bogor, Depok, Tangerang, and Bekasi (Jabodetabek) area in Indonesia.  The 

preprocessing of the data involves the cropping, gap filling, geometric correction, and overlays, which 

are all conducted using the ENVI software. We select 75 different locations in the Jabodetabek area as 

the training data. 

2.2.  Methods 

The system starts with extracting 5 x 5 pixels of impervious, water, and land areas from the Landsat 7 

satellite imagery. Afterward, the mean vectors of each band are computed and then standardized. The 

next step is the dimensionality reduction process by calculating the eigenvalue and eigenvector of the 

                                                      
1 https://glovis.usgs.gov 
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matrix. After finding the decomposition matrix, we can train the principal component regression model. 

This trained model can then be used for the classification of impervious surface from the testing data. 

Bootstrap resampling is a data sampling method where samples are taken arbitrarily with 

replacement from the population [8, 9]. We employ this sampling strategy in the experiments, 

specifically in the training phase. 

 

Table 1. The characteristic of Landsat 7 ETM+ satellite bands [10] 

BANDS WAVELENGTH RESOLUTION 

Band 1 – Blue 0.45 – 0.52  30 m 

Band 2 – Green 0.52 – 0.60 30 m 

Band 3 – Red 0.63 – 0.69 30 m 

Band 4 – Near Infrared (NIR) 0.77 – 0.90 30 m 

Band 5 – Shortwave Infrared (SWIR) 1 1.55 – 1.75 30 m 

Band 6 – Thermal 10.40 – 12.50 60 m 

Band 7 – Shortwave Infrared (SWIR) 2 2.09 – 2.35 30 m 

Band 8 – Panchromatic  0.52 – 0.90 15 m 

 

The principal component analysis (PCA), which is also known as Karhunen-Loève transform, is a 

dimensionality reduction method which can be defined as the orthogonal projection of the data onto a 

lower dimensional linear space or as the linear projection that minimizes the average projection cost 

[11]. To calculate the PCA, we employ the singular value decomposition (SVD) method to compute the 

eigenvector which will be used by the PCA.  

Let 𝑋 be the input matrix from the Landsat 7 satellite imagery of size 𝑛 ×  𝑝 and the mean vector 

𝑋⃗̅ = (𝑥̅1, 𝑥̅2, 𝑥̅3, … , 𝑥̅𝑝). The standardization process computes 𝐵𝑖𝑗 = 𝑥𝑖𝑗 − 𝑥̅𝑗 for 𝑖 = 1, 2, 3, … , 𝑛. We 

can then compute the eigenvalue 𝜆 of C and D, such that |𝐶 − 𝜆𝐼| = 0 and |𝐷 − 𝜆𝐼| = 0 where 𝐶 =
𝐵𝑇𝐵 and 𝐷 = 𝐵𝐵𝑇; and the eigenvector 𝑉 such that (𝐶 − 𝜆𝐼)𝑉 = 0 and (𝐷 − 𝜆𝐼)𝑉 = 0. The 

decomposition matrix of B can then be calculated using SVD as in Eq. (1) where U denotes the 

decomposition matrix. 

 

 𝑈 = 𝐵 𝑉 𝜆−1 (1) 

 

The principal component matrix can then be calculated as: 

 

 𝑊 = 𝑊𝑈
𝑇 (2) 

 

where 𝑊𝑢 = 𝜆𝑈𝑇. The coefficient 𝛽 of the regression model  𝑌̂ = 𝑊 ⋅ 𝛽 can then be calculated using 

the normal equation as in Eq. (3). 

 

 𝛽 = (𝑊𝑇𝑊)−1𝑊𝑇𝑌 (3) 

 

where 𝑌 denotes the actual class of impervious, water, or land area from the training data. 

Initially, in order to evaluate the regression model at the testing phase, the principal components of 

the test data have to be calculated as in Eq. (4) where 𝑉 is the eigenvector from the training phase. 

 

 𝑊𝑡𝑒𝑠𝑡 = 𝑋𝑡𝑒𝑠𝑡  𝑉 (4) 
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Afterward, the test data can be classified using the regression model as in Eq. (5) where 𝛽 is the 

coefficient of the model. It should be noted that the output variable 𝑌 uses dummy dependent variables 

similar to [12]. 

 

 𝑌𝑡𝑒𝑠𝑡 = 𝑊𝑡𝑒𝑠𝑡  𝛽 (5) 

3.  Results and Discussions 

The performance metric we employed for the model evaluation is the Cohen’s kappa coefficient 𝜅 [13], 

which measures the inter-rater agreement of categorical items [14]. The coefficient can be computed as 

in Eq. (6) where 𝑝𝑜 is the relative observed agreement or accuracy and 𝑝𝑒 is the hypothetical probability 

of chance agreement. Complete agreement is shown by the value of 𝜅 = 1, while 𝜅 = 0 shows that there 

is no agreement. It should be noted that a negative value of 𝜅 is possible which implies that there is no 

effective agreement or the agreement is worse than random [14].  

 

 𝜅 = 1 −
1−𝑝𝑜

1−𝑝𝑒
 (6) 

 

The training data consist of 750 pixels retrieved from 75 different locations in Jabodetabek area, 

where we select 150 pixels from each region (50 pixels from each class). The number of testing data is 

400 pixels, also from the Jabodetabek area, which consists of 150 impervious area, 100 water bodies, 

and 150 open lands. Moreover, the experiments are conducted 20 times. Figure 2 shows the result of 

each experiment. 

 

 
Figure 2. The Cohen’s kappa of each experiment shows the average value of 0.747335 (training) and 0.73833 (testing). 

 

The average Cohen’s kappa from the experiments is 0.747335 and 0.73833 for the training and 

testing, respectively. It can be said that the result shows that there is a good agreement from the 

experiments and implies that the model shows a good performance. 
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4.  Conclusions 

This paper demonstrates the classification of impervious, water, and land area from Landsat 7 satellite 

images using the bootstrap principal component analysis and regression model. This research uses 

satellite imagery from the Jakarta, Bogor, Depok, Tangerang, and Bekasi (Jabodetabek) area in 

Indonesia. The principal component analysis uses the eigenvector calculated by the singular value 

decomposition method. The experiments show that the regression model can accurately classify the 

classes with good performance. 

For the future works, the model can be further developed to classify other land covers, such as 

vegetation. A good automatic land cover classification may help the government in making urban 

planning decisions. 
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